A nonsmooth program for jamming hard spheres

被引:0
|
作者
Peter Hinow
机构
[1] University of Wisconsin-Milwaukee,Department of Mathematical Sciences
来源
Optimization Letters | 2014年 / 8卷
关键词
Hard spheres; Jammed configurations; Nonsmooth optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We study packings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} hard spheres of equal radius in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional unit cube. We present a nonsmooth function whose local extrema are the radii of jammed packings (where no subset of spheres can be moved keeping all others fixed) and show that for a fixed number of spheres there are only finitely many radii of such jammed configurations. We propose an algorithm for the maximization of this maximal radius function and present examples for five to eight disks in the unit square and four to six spheres in the unit cube. The method allows straightforward generalization to packings of spheres in other compact containers.
引用
收藏
页码:13 / 33
页数:20
相关论文
共 50 条
  • [1] A nonsmooth program for jamming hard spheres
    Hinow, Peter
    OPTIMIZATION LETTERS, 2014, 8 (01) : 13 - 33
  • [2] Jamming of polydisperse hard spheres: The effect of kinetic arrest
    Hermes, M.
    Dijkstra, M.
    EPL, 2010, 89 (03)
  • [3] Vibrational Properties of Hard and Soft Spheres Are Unified at Jamming
    Arceri, Francesco
    Corwin, Eric, I
    PHYSICAL REVIEW LETTERS, 2020, 124 (23)
  • [4] Jamming Transition and Inherent Structures of Hard Spheres and Disks
    Ozawa, Misaki
    Kuroiwa, Takeshi
    Ikeda, Atsushi
    Miyazaki, Kunimasa
    PHYSICAL REVIEW LETTERS, 2012, 109 (20)
  • [5] Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond
    Berthier, Ludovic
    Coslovich, Daniele
    Ninarello, Andrea
    Ozawa, Misaki
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [6] Jamming II: Edwards' statistical mechanics of random packings of hard spheres
    Wang, Ping
    Song, Chaoming
    Jin, Yuliang
    Makse, Hernan A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (03) : 427 - 455
  • [7] Gardner transition coincides with the emergence of jamming scalings in hard spheres and disks
    Wang, Qi
    Pan, Deng
    Jin, Yuliang
    arXiv,
  • [8] Universal behaviour of the glass and the jamming transitions in finite dimensions for hard spheres
    Coniglio, Antonio
    Ciamarra, Massimo Pica
    Aste, Tomaso
    SOFT MATTER, 2017, 13 (46) : 8766 - 8771
  • [9] Mean field theory of the glass transition and jamming of hard spheres: Recent advances
    Zamponi, Francesco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [10] Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres
    Santos, Andres
    Yuste, Santos B.
    Lopez de Haro, Mariano
    Odriozola, Gerardo
    Ogarko, Vitaliy
    PHYSICAL REVIEW E, 2014, 89 (04):