A global bifurcation theorem for critical values in Banach spaces

被引:0
作者
Pablo Amster
Pierluigi Benevieri
Julián Haddad
机构
[1] Universidad de Buenos Aires and IMAS-CONICET,Departamento de Matemática, Facultad de Ciencias Exactas y Naturales
[2] Universidade de São Paulo,Instituto de Matemática e Estatística
[3] Universidade Federal de Minas Gerais,Departamento de Matemática, ICEx
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2019年 / 198卷
关键词
Global bifurcation; Critical values; Spectral flow; 58E05; 58E07; 58J30;
D O I
暂无
中图分类号
学科分类号
摘要
We present a global bifurcation result for critical values of C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} maps in Banach spaces. The approach is topological based on homotopy equivalence of pairs of topological spaces. For C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} maps, we prove a particular global bifurcation result, based on the notion of spectral flow.
引用
收藏
页码:773 / 794
页数:21
相关论文
共 34 条
[1]  
Ambrosetti A(1998)Branching points for a class of variational operators J. Anal. Math. 76 321-335
[2]  
Arcoya D(1997)Landesman-lazer conditions and quasilinear elliptic equations Nonlinear Anal.: Theory Methods Appl. 28 1623-1632
[3]  
Orsina L(1976)Spectral asymmetry and Riemannian geometry, III Proc. Camb. Philos. Soc. 79 71-99
[4]  
Atiyah MF(2005)A degree theory for a class of perturbed Fredholm maps Fixed Point Theory Appl. 2 185-206
[5]  
Patodi VK(1998)A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree Ann. Sci. Math. Québec 22 131-148
[6]  
Singer IM(1972)Die Lösung der Verweigungsgleichungen für nichtlineare Eigenwertprobleme Math. Z. 127 105-126
[7]  
Benevieri P(1990)A local bifurcation theorem for Proc. Am. Math. Soc. 109 995-1002
[8]  
Calamai A(1992) Fredholm maps J. Reine Angew. 427 1-33
[9]  
Furi M(1994)The degree of proper J. Funct. Anal. 124 1-39
[10]  
Benevieri P(1999) Fredholm mappings I. Gen. Theory J. Funct. Anal. 162 52-95