Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations

被引:0
|
作者
Wansheng Wang
Mengli Mao
Zheng Wang
机构
[1] Shanghai Normal University,Department of Mathematics
来源
关键词
Linear parabolic equations; Semilinear parabolic equations; Variable step-size BDF2 method; Stability; Error estimates; 65M12; 65M15; 65L06; 65J08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, stability and error estimates for time discretizations of linear and semilinear parabolic equations by the two-step backward differentiation formula (BDF2) method with variable step-sizes are derived. An affirmative answer is provided to the question: whether the upper bound of step-size ratios for the l∞(0,T;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l^{\infty }(0,T;H)$\end{document}-stability of the BDF2 method for linear and semilinear parabolic equations is identical with the upper bound for the zero-stability. The l∞(0,T;V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l^{\infty }(0,T;V)$\end{document}-stability of the variable step-size BDF2 method is also established under more relaxed condition on the ratios of consecutive step-sizes. Based on these stability results, error estimates in several different norms are derived. To utilize the BDF method, the trapezoidal method and the backward Euler scheme are employed to compute the starting value. For the latter choice, order reduction phenomenon of the constant step-size BDF2 method is observed theoretically and numerically in several norms. Numerical results also illustrate the effectiveness of the proposed method for linear and semilinear parabolic equations.
引用
收藏
相关论文
共 50 条
  • [21] VARIABLE STEP-SIZE BDF3 METHOD FOR ALLEN-CAHN EQUATION
    Chen, Minghua
    Yu, Fan
    Zhang, Qingdong
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (05): : 1380 - 1406
  • [22] ANNOUNCEMENT ON “SHARP ERROR ESTIMATE OF BDF2 SCHEME WITH VARIABLE TIME STEPS FOR LINEAR REACTION-DIFFUSION EQUATIONS”
    ZHANG Jiwei
    ZHAO Chengchao
    数学杂志, 2021, 41 (01) : 5 - 11
  • [23] Comparison of implicit–explicit and Newton linearized variable two-step BDF methods for semilinear parabolic equations
    Wansheng Wang
    Chengyu Jin
    Yi Huang
    Linhai Li
    Chun Zhang
    Computational and Applied Mathematics, 2023, 42
  • [24] Improved maximum-norm a posteriori error estimates for linear and semilinear parabolic equations
    Kopteva, Natalia
    Linss, Torsten
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (05) : 999 - 1022
  • [25] Improved maximum-norm a posteriori error estimates for linear and semilinear parabolic equations
    Natalia Kopteva
    Torsten Linß
    Advances in Computational Mathematics, 2017, 43 : 999 - 1022
  • [26] A variable step-size implementation of a variational method for stiff differential equations
    Amat, Sergio
    Jose Legaz, M.
    Pedregal, Pablo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 49 - 57
  • [27] A variable step-size method for solving stiff Lyapunov differential equations
    Choi, CH
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4197 - 4199
  • [28] A noise reduction method based on linear prediction with variable step-size
    Kawamura, A
    Iiguni, Y
    Itoh, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (04) : 855 - 861
  • [29] Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations
    Li, Meng
    Wang, Lingli
    Wang, Nan
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 378 - 410
  • [30] A posteriori error estimates for the fractional-step θ-scheme for linear parabolic equations
    Karakatsani, Fotini
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 141 - 162