An a posteriori error estimate and a comparison theorem for the nonconforming P1 element

被引:0
作者
Dietrich Braess
机构
[1] Ruhr-University of Bochum,Faculty of Mathematics
来源
Calcolo | 2009年 / 46卷
关键词
Hypercircle method; Crouzeix–Raviart element; Raviart–Thomas element; 65N55; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A posteriori error estimates for the nonconforming P1 element are easily determined by the hypercircle method via Marini’s observation on the relation to the mixed method of Raviart–Thomas. Another tool is Ainsworth’s application of the hypercircle method to mixed methods. The relation on the finite element solutions is also extended to an a priori relation of the errors, and the errors of four different finite element methods can be compared.
引用
收藏
页码:149 / 155
页数:6
相关论文
共 11 条
[1]  
Ainsworth M.(2008)A posteriori error estimation for lowest order Raviart Thomas mixed finite elements SIAM J. Sci. Comput. 30 189-204
[2]  
Braess D.(2009)Equilibrated residual error estimates are Comput. Methods Appl. Mech. Eng. 198 1189-1197
[3]  
Pillwein V.(1996)-robust RAIRO Model. Math. Anal. Numer. 30 385-400
[4]  
Schöberl J.(1985)A posteriori error estimators for nonconforming finite element methods SIAM J. Numer. Anal. 22 493-496
[5]  
Dari E.(1947)An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method Q. Appl. Math. 5 241-269
[6]  
Durán R.(undefined)Approximations in elasticity based on the concept of function spaces undefined undefined undefined-undefined
[7]  
Padra C.(undefined)undefined undefined undefined undefined-undefined
[8]  
Vampa V.(undefined)undefined undefined undefined undefined-undefined
[9]  
Marini L.D.(undefined)undefined undefined undefined undefined-undefined
[10]  
Prager W.(undefined)undefined undefined undefined undefined-undefined