A note on option pricing for the constant elasticity of variance model

被引:7
作者
Delbaen F. [1 ]
Shirakawa H. [2 ]
机构
[1] Department of Mathematics, Eidegenössische Technische Hochschule Zürich
[2] Department of Industrial Engineering and Management, Tokyo Institute of Technology, Meguro-ku, Tokyo 152
关键词
Arbitrage; Constant elasticity of variance model; Equivalent martingale measure; Option pricing; Squared bessel process;
D O I
10.1023/A:1022269617674
中图分类号
学科分类号
摘要
We study the arbitrage free option pricing problem for the constant elasticity of variance (CEV) model. To treat the stochastic aspect of the CEV model, we direct attention to the relationship between the CEV model and squared Bessel processes. Then we show the existence of a unique equivalent martingale measure and derive the Cox's arbitrage free option pricing formula through the properties of squared Bessel processes. Finally we show that the CEV model admits arbitrage opportunities when it is conditioned to be strictly positive. © 2002 Kluwer Academic Publishers.
引用
收藏
页码:85 / 99
页数:14
相关论文
共 11 条
[1]  
Cox J.C., The constant elasticity of variance option pricing model, J. Portfolio Managt?, pp. 15-17, (1996)
[2]  
Cox J.C., Ross S., The valuation of options for alternative stochastic processes, J. Financ. Econom., 3, pp. 145-166, (1975)
[3]  
Cox J.C., Rubinstein M., A survey of alternative option pricing models, Option Pricing, pp. 3-33, (1983)
[4]  
Delbaen F., Schachermayer W., A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300, pp. 463-520, (1994)
[5]  
Delbaen F., Schachermayer W., Arbitrage possibilities in bessel processes and their relations to local martingales, Probability Related Fields, 102, pp. 357-366, (1995)
[6]  
Harrison J.M., Kreps D.M., Martingales and arbitrage in multiperiod security markets, J. Econom. Theory, 20, pp. 381-408, (1979)
[7]  
Harrison J.M., Pliska S.R., Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes Applications, 11, pp. 381-408, (1981)
[8]  
Harrison J.M., Pliska S.R., A stochastic calculus model of continuous time trading: Complete markets, Stochastic Processes Applications, 13, pp. 313-316, (1983)
[9]  
Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, (1988)
[10]  
Revuz D., Yor M., Continuous Martingales and Brownian Motion, (1991)