Stability of functional equations on hypergroups

被引:0
作者
László Székelyhidi
机构
[1] University of Debrecen,Institute of Mathematics
[2] University of Botswana,Department of Mathematics
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
Hypergroup; stability; Primary 39B82; Secondary 39B52; 20N20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove stability theorems for functional equations on hypergroups. Our proofs are based on superstability-type methods and on the method of invariant means.
引用
收藏
页码:1475 / 1483
页数:8
相关论文
共 9 条
[1]  
Székelyhidi L.(1981)The stability of linear functional equations C. R. Math. Rep. Acad. Sci. Can. 3 63-67
[2]  
Székelyhidi L.(1982)Note on a stability theorem Can. Math. Bull. 25 500-501
[3]  
Székelyhidi L.(1982)On a theorem of Baker, Lawrence and Zorzitto Proc. Am. Math. Soc. 84 95-96
[4]  
Székelyhidi L.(1983)The stability of d’Alembert-type functional equations Acta Sci. Math. (Szeged) 44 313-320
[5]  
Székelyhidi L.(1988)Stability of some functional equations in economics Rend. Sem. Mat. Fis. Milano 58 169-176
[6]  
Székelyhidi L.(1989)An abstract superstability theorem Abh. Math. Sem. Univ. Hamburg 59 81-83
[7]  
Székelyhidi L.(1990)The stability of the sine and cosine functional equations Proc. Am. Math. Soc. 110 109-115
[8]  
Székelyhidi L.(1990)Stability properties of functional equations describing the scientific laws J. Math. Anal. Appl. 150 151-158
[9]  
Székelyhidi L.(2006)Superstability of moment functions on hypergroups Nonlinear Funct. Anal. Appl. 11 815-821