Modular High-Temperature Helium-Cooled Nuclear Reactor with Spherical Fuel Elements for Electricity and Hydrogen Production

被引:0
|
作者
G. A. Filippov
R. G. Bogoyavlenskii
N. N. Ponomarev-Stepnoi
A. O. Gol'tsev
机构
[1] All-Russia Scientific-Research and Design Institute of Nuclear Power Machine Building,Federal Unitary State Enterprise
[2] Russian Science Center Kurchatov Institute,undefined
来源
Atomic Energy | 2004年 / 96卷
关键词
Steam; Helium; Power Density; Average Power; Hydrogen Production;
D O I
暂无
中图分类号
学科分类号
摘要
The results of optimizational neutron-physical and thermohydrulic calculations of the core of a modular high-temperature helium-cooled reactor with mobile spherical fuel elements are presented. A special structural feature of such fuel elements is that they contain fuel microelements with multilayered ceramic coatings capable of confining radioactive fission products at high temperatures with deep burnup of nuclear fuel. The thermal power of the reactor is 850 MW(t) with average power density 30 MW/m3 and helium temperature 1000°C at the core exit. This makes it possible to use such reactors to produce hydrogen by a cost-effective high-temperature process using steam conversion of methane and to generate electricity in a one-loop helium turbosystem with efficiency >45%.
引用
收藏
页码:152 / 158
页数:6
相关论文
共 39 条
  • [1] Modular high-temperature helium-cooled nuclear reactor with spherical fuel elements for electricity and hydrogen production
    Filippov, GA
    Bogoyavrenskii, RG
    Ponomarev-Stepnoi, NN
    Gol'tsev, AO
    ATOMIC ENERGY, 2004, 96 (03) : 152 - 158
  • [2] Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity
    Forsberg, CW
    NUCLEAR TECHNOLOGY, 2003, 144 (03) : 289 - 302
  • [3] Thermodynamic analysis of high-temperature helium heated fuel reforming for hydrogen production
    Wang, Feng
    Cao, Yiding
    Zhou, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (03) : 418 - 432
  • [4] Effect of helium on temperature rise of helium blower drive motor in high-temperature gas-cooled reactor
    Xu, Xiao
    Ge, Baojun
    Tao, Dajun
    Han, Jichao
    Wang, Likun
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [5] Evaluation of Lapped Tape Electrical Insulation for Gaseous Helium-Cooled High-Temperature Superconducting Power Cables
    Nazir, M. Tariq
    Guvvala, Nagaraju
    Das, Arup K.
    Kim, Chul H.
    Pamidi, Sastry V.
    Cheetham, Peter
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 1816 - 1824
  • [6] Nuclear hydrogen production by high-temperature electrolysis
    Kasai, Shigeo
    Fujiwara, Seiji
    Yamada, Kazuya
    Ogawa, Takashi
    Matsunaga, Kentaro
    Yoshino, Masato
    Hoashp, Eiji
    Makino, Shinichi
    Transactions of the Atomic Energy Society of Japan, 2009, 8 (02) : 122 - 141
  • [7] Hydrogen production by high temperature electrolysis with nuclear reactor
    Fujiwara, Seiji
    Kasai, Shigeo
    Yamauchi, Hiroyuki
    Yamada, Kazuya
    Makino, Shinichi
    Matsunaga, Kentaro
    Yoshino, Masato
    Kameda, Tsuneji
    Ogawa, Takashi
    Momma, Shigeki
    Hoashi, Eiji
    PROGRESS IN NUCLEAR ENERGY, 2008, 50 (2-6) : 422 - 426
  • [8] System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant
    Harvego, E. A.
    McKellar, M. G.
    Sohal, M. S.
    O'Brien, J. E.
    Herring, J. S.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 021005 - 021005
  • [9] High-Temperature Nuclear Energy Technology Based on Sodium-Cooled Fast Reactors for Hydrogen Production
    A. P. Sorokin
    S. G. Kalyakin
    F. A. Kozlov
    V. V. Alekseev
    G. P. Bogoslovskaya
    A. P. Ivanov
    M. A. Konovalov
    A. V. Morozov
    E. A. Orlova
    V. Yu. Stogov
    Atomic Energy, 2014, 116 : 241 - 251
  • [10] High-Temperature Nuclear Energy Technology Based on Sodium-Cooled Fast Reactors for Hydrogen Production
    Sorokin, A. P.
    Kalyakin, S. G.
    Kozlov, F. A.
    Alekseev, V. V.
    Bogoslovskaya, G. P.
    Ivanov, A. P.
    Konovalov, M. A.
    Morozov, A. V.
    Orlova, E. A.
    Stogov, V. Yu.
    ATOMIC ENERGY, 2014, 116 (04) : 241 - 251