Study of divalent and trivalent chromium in forsterite by high-frequency EPR spectroscopy

被引:0
|
作者
A. A. Konovalov
V. F. Tarasov
V. B. Dudnikova
E. V. Zharikov
机构
[1] Russian Academy of Sciences,E.K. Zavoĭsky Physical
[2] Russian Academy of Sciences,Technical Institute
[3] Russian Academy of Sciences,V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry
[4] D.I. Mendeleev University of Chemical Technology of Russia,A.M. Prokhorov General Physics Institute
来源
Physics of the Solid State | 2009年 / 51卷
关键词
61.72.sd; 76.30.Fc;
D O I
暂无
中图分类号
学科分类号
摘要
Divalent and trivalent chromium ions Cr2+ and Cr3+ replacing magnesium ions at octahedral positions in Mg2SiO4: Cr and Mg2SiO4: Cr: Li crystals are investigated by submillimeter EPR spectroscopy in the frequency range 65–230 GHz. The crystals are grown from the melt by the Czochralski method. The content of mixed-valence chromium species in forsterite is analyzed. It is demonstrated that, in crystals grown in argon (the oxygen partial pressure is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{O_2 } $$\end{document} = 0.01 kPa), approximately half of the chromium ions are in the divalent form. The Cr2+ ions are distributed over the M1 and M2 positions in a ratio of approximately 2: 1. A change in the oxygen partial pressure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{O_2 } $$\end{document} and the chromium concentration, as well as an additional doping with lithium, does not lead to substantial changes in the distribution of divalent chromium ions over the positions. It is shown that an increase in the oxygen partial pressure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{O_2 } $$\end{document} from 0.01 to 2.00 kPa results in a decrease in the coefficient of divalent chromium distribution between the crystal and the melt. Doping with lithium also decreases the concentration of Cr2+ centers. In crystals grown without lithium, approximately half of the trivalent chromium ions are associated with magnesium vacancies. The addition of lithium leads to the destruction of these associates, an increase in the concentration of individual Cr3+ centers, and the formation of lithium associates with trivalent chromium ions. The conditions for the formation of associates of trivalent chromium ions with lithium ions are optimum when the crystal contains approximately identical amounts of Cr3+ and Li+ ions. Doping with lithium increases the concentration of Cr3+ ions and, thus, decreases the fraction of Cr2+ and Cr4+ ions in the total content of chromium centers.
引用
收藏
页码:1626 / 1633
页数:7
相关论文
共 50 条
  • [41] SPECTROSCOPY OF HIGH-FREQUENCY PHONONS
    BRON, WE
    REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (03) : 301 - 352
  • [42] High-field (high-frequency) EPR spectroscopy and structural characterization of a novel manganese(III) corrole
    Bendix, J
    Gray, HB
    Golubkov, G
    Gross, Z
    CHEMICAL COMMUNICATIONS, 2000, (19) : 1957 - 1958
  • [43] High-frequency limit of spectroscopy
    Nazarov, Vladimir U.
    Baer, Roi
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (08):
  • [44] High-frequency/high-field EPR spectroscopy of the high-spin ferrous ion in hexaaqua complexes
    Telser, J
    van Slageren, J
    Vongtragool, S
    Dressel, M
    Reiff, WM
    Zvyagin, SA
    Ozarowski, A
    Krzystek, J
    MAGNETIC RESONANCE IN CHEMISTRY, 2005, 43 : S130 - S139
  • [45] High-Frequency EPR and ENDOR Spectroscopy of Mn2+Ions in CdSe/CdMnS Nanoplatelets
    Babunts, Roman A.
    Uspenskaya, Yulia A.
    Romanov, Nikolai G.
    Orlinskii, Sergei B.
    Mamin, Georgy V.
    Shornikova, Elena V.
    Yakovlev, Dmitri R.
    Bayer, Manfred
    Isik, Furkan
    Shendre, Sushant
    Delikanli, Savas
    Demir, Hilmi Volkan
    Baranov, Pavel G.
    ACS NANO, 2023, 17 (05) : 4474 - 4482
  • [46] Defects in AlN: High-frequency EPR and ENDOR studies
    Orlinskii, Sergei B.
    Baranov, Pavel G.
    Bundakova, Anna P.
    Bickermann, Matthias
    Schmidt, Jan
    PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) : 4873 - 4876
  • [47] A new step in high-frequency EPR of defects in semiconductors
    Blok, H
    Disselhorst, JAJM
    Orlinskii, SB
    Schmidt, J
    Baranov, PG
    PHYSICA B-CONDENSED MATTER, 2003, 340 : 1147 - 1150
  • [48] High-frequency EPR of Co2+ in CdSe
    Isber, S
    Christidis, T
    Tabbal, M
    Charar, S
    Goiran, M
    PHYSICA B, 2001, 293 (3-4): : 304 - 307
  • [49] HIGH-FREQUENCY MODULATION SYSTEM FOR THE VARIAN EPR - SPECTROMETER
    BENNETT, RG
    HOELL, PC
    SCHWENKER, RP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1958, 29 (07): : 659 - 660
  • [50] High-field/high-frequency EPR spectroscopy on synthetic melanin: on the origin of carbon-centered radicals
    Paulin, J. V.
    Batagin-Neto, A.
    Naydenov, B.
    Lips, K.
    Graeff, C. F. O.
    MATERIALS ADVANCES, 2021, 2 (19): : 6297 - 6305