More Arnold’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} superconformal gauge theories

被引:0
作者
Michele Del Zotto
机构
[1] SISSA,
[2] Scuola Internazionale Superiore di Studi Avanzati,undefined
关键词
Supersymmetric gauge theory; Nonperturbative Effects; Bethe Ansatz;
D O I
10.1007/JHEP11(2011)115
中图分类号
学科分类号
摘要
We study the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} gauge theories obtained by engineering the Type IIB superstring on the quasi-homogeneous elements of Arnold’s list of bimodal singularities. All these theories have finite BPS chambers and we describe, along the lines of arXiv:1107.5747, the algebraically obvious ones.
引用
收藏
相关论文
共 45 条
  • [1] Seiberg N(1994)Electric-magnetic duality, monopole condensation and confinement in Nucl. Phys. B 426 19-undefined
  • [2] Witten E(1994) supersymmetric Yang-Mills theory Nucl. Phys. B 431 484-undefined
  • [3] Seiberg N(2010)Monopoles, duality and chiral symmetry breaking in Lett. Math. Phys. 91 1-undefined
  • [4] Witten E(2011) supersymmetric QCD Lett. Math. Phys. 95 1-undefined
  • [5] Dimofte T(2010)Refined, motivic and quantum Commun. Math. Phys. 299 163-undefined
  • [6] Gukov S(2011)Quantum wall crossing in JHEP 10 099-undefined
  • [7] Dimofte T(2008) gauge theories Inventiones Mathematicae 175 223-undefined
  • [8] Gukov S(1975)Four-dimensional wall-crossing via three-dimensional field theory Funkt. Anal. Appl. 8 192-undefined
  • [9] Soibelman Y(1975)On Arnold’s 14 ‘exceptional’ Funkt. Anal. Appl. 9 67-undefined
  • [10] Gaiotto D(1993) superconformal gauge theories Commun. Math. Phys. 158 569-undefined