Stabilization of HIV/aids model by receding horizon control

被引:5
作者
Elaiw A.M. [1 ]
Kiss K. [1 ]
Caetano M.A.L. [2 ]
机构
[1] Budapest University of Technology and Economics, School of Mathematics, Budapest
[2] Ibmec Business School, 01323001, são Paulo, Rua Maestro Cardim
关键词
AIDS; Feedback stabilization; HIV; Receding horizon control; Sampled-data systems;
D O I
10.1007/BF02936558
中图分类号
学科分类号
摘要
This work concerns the stabilization of uninfected steady state of an ordinary differential equation system modeling the interaction of the HIV virus and the immune system of the human body. The control variable is the drug dose, which, in turn, affects the rate of infection of CD4+ T cells by HIV virus. The feedback controller is constructed by a variant of the receding horizon control (RHC) method. Simulation results are discussed. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:95 / 112
页数:17
相关论文
共 32 条
[1]  
Perelson A.(1993)Dynamic of HIV infection of CD4 Math. Biosc. 114 81-125
[2]  
Kirschner D.(1997) T cells J. Math. Biol. 35 775-792
[3]  
Boer R. D.(1998)Optimal control of the chemotherapy of HIV Electronic J. of Diff. Eqs. 1998 1-12
[4]  
Kirschner D.(1999)Optimizing chemotherapy in an HIV model Anais da Academia Brasileira de ciencias 71 589-597
[5]  
Lenhart S.(2002)A comparative evaluation of open loop and closed loop drug administration strategies in the treatment of AIDS Anais da Academia Brasileira de ciencias 74 589-597
[6]  
Serbin S.(2002)Short and long period optimization of drug doses in the treatment of AIDS BioEssays 24 1178-1187
[7]  
Fister K. R.(2003)Mathematical models of HIV pathogenesis and treatment Math. Biosc. 184 165-186
[8]  
Lenhart S.(1998)Modeling HIV dynamic and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity Syst. Control Lett 35 195-200
[9]  
McNally J. S.(2000)Receding horizon control via Bolza-type optimization Automatica 36 789-814
[10]  
Caetano M. A. L.(2001)Constrained model predictive control: Stability and optimality IEEE Trans. Autom. Control 46 776-783