Heterotic and bosonic string amplitudes via field theory

被引:0
作者
Thales Azevedo
Marco Chiodaroli
Henrik Johansson
Oliver Schlotterer
机构
[1] Uppsala University,Department of Physics and Astronomy
[2] Nordita,undefined
[3] Stockholm University and KTH Royal Institute of Technology,undefined
[4] Max-Planck-Institut für Gravitationsphysik,undefined
[5] Albert-Einstein-Institut,undefined
[6] Perimeter Institute for Theoretical Physics,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Bosonic Strings; Scattering Amplitudes; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
Previous work has shown that massless tree amplitudes of the type I and IIA/B superstrings can be dramatically simplified by expressing them as double copies between field-theory amplitudes and scalar disk/sphere integrals, the latter containing all the α′-corrections. In this work, we pinpoint similar double-copy constructions for the heterotic and bosonic string theories using an α′-dependent field theory and the same disk/sphere integrals. Surprisingly, this field theory, built out of dimension-six operators such as (DμFμν)2, has previously appeared in the double-copy construction of conformal supergravity. We elaborate on the α′ → ∞ limit in this picture and derive new amplitude relations for various gauge-gravity theories from those of the heterotic string.
引用
收藏
相关论文
共 157 条
[41]  
Mason L(2017)Single-valued Motivic Periods and Multiple Zeta Values JHEP 11 101-undefined
[42]  
Skinner D(2016)Ambitwistor formulations of R JHEP 09 018-undefined
[43]  
Casali E(2000) gravity and (DF) JHEP 04 067-undefined
[44]  
Geyer Y(2010) gauge theories JHEP 09 001-undefined
[45]  
Mason L(2011)Factorization of Chiral String Amplitudes JHEP 01 191-undefined
[46]  
Monteiro R(1990)Super Poincaré covariant quantization of the superstring Illinois J. Math. 34 1-undefined
[47]  
Roehrig KA(2002)Proof of Gravity and Yang-Mills Amplitude Relations Compos. Math. 133 111601-undefined
[48]  
Cachazo F(2011)The Momentum Kernel of Gauge and Gravity Theories Phys. Rev. Lett. 106 019-undefined
[49]  
He S(2017)Special values of hyperlogarithms and linear difference schemes JHEP 02 091-undefined
[50]  
Yuan EY(2012)Selberg integrals and multiple zeta values JHEP 10 009-undefined