Quelques résultats sur les déformations équivariantes des courbes stables

被引:0
作者
Maugeais S. [1 ]
机构
[1] SFB 478, Geometrische Strukturen in der Mathematik, 48149 Münster
关键词
Number Theory; Algebraic Geometry; Topological Group;
D O I
10.1007/s00229-006-0633-2
中图分类号
学科分类号
摘要
Let G be a finite group, let g ≥ 2 and g′l ≥ 0 be integers. We introduce the algebraic stack [InlineMediaObject not available: see fulltext.] classifying the stable curves [InlineMediaObject not available: see fulltext.] of genus g endowed with an action of G faithful in each geometric fiber and such that the quotient of each fiber is a semi-stable curve of genus g′. We study the completion of the local rings of this algebraic stack. They are closely related to universal equivariant deformation rings R C,G of stable curves [InlineMediaObject not available: see fulltext.] endowed with a faithful action of G. A useful tool for this purpose is a local-global principle generalizing the one obtained by Bertin and Mézard in [BM00]. We then use the results we already proved in [Mau03b] and [Mau03a] to describe some properties of the space [InlineMediaObject not available: see fulltext.] (purity, dimension). © Springer-Verlag 2006.
引用
收藏
页码:53 / 82
页数:29
相关论文
共 14 条
[1]  
Bertin J., Mezard A., Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., 141, 1, pp. 195-238, (2000)
[2]  
Bertin J., Maugeais S., Déformation équivariante des courbes semi-stables, Ann. Inst. Fourier M, 6, pp. 1905-1941, (2005)
[3]  
Cornelissen G., Kato F., Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., 116, 3, pp. 431-470, (2003)
[4]  
Cornelissen G., Mezard A., Relèvements des Revêtements de Courbes Faiblement Remifiés
[5]  
De Jong A.J., Families of curves and alterations, Ann. Inst. Fourier (Grenoble), 47, 2, pp. 599-621, (1997)
[6]  
Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math., 36, pp. 75-109, (1969)
[7]  
Ekedahl T., Boundary behaviour of Hurwitz schemes, the moduli space of curves (Texel Island, 1994), Progr. Math., 129, pp. 173-198, (1995)
[8]  
Grothendieck A., Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9, 2, pp. 119-221, (1957)
[9]  
Harbater D., Moduli of p-covers of curves, Comm. Algebra, 8, 12, pp. 1095-1122, (1980)
[10]  
Liu Q., Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, (2002)