Congruences involving gn(x)=∑k=0nnk22kkxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n(x)=\sum \limits _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k$$\end{document}

被引:0
作者
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
关键词
Franel numbers; Apéry numbers; Binomial coefficients; Congruences; Primary 11A07; 11B65; Secondary 05A10; 05A30; 11B75;
D O I
10.1007/s11139-015-9727-3
中图分类号
学科分类号
摘要
Define gn(x)=∑k=0nnk22kkxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n(x)=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k$$\end{document} for n=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0,1,2,\ldots $$\end{document}. Those numbers gn=gn(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n=g_n(1)$$\end{document} are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving gn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_n(x)$$\end{document}. For example, for any prime p>5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>5$$\end{document} we have ∑k=1p-1gk(-1)k≡0(modp2)and∑k=1p-1gk(-1)k2≡0(modp).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p. \end{aligned}$$\end{document}This is similar to Wolstenholme’s classical congruences ∑k=1p-11k≡0(modp2)and∑k=1p-11k2≡0(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{k=1}^{p-1}\frac{1}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{1}{k^2}\equiv 0\pmod p \end{aligned}$$\end{document}for any prime p>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>3$$\end{document}.
引用
收藏
页码:511 / 533
页数:22
相关论文
共 44 条