Bone Quality Assessment Techniques: Geometric, Compositional, and Mechanical Characterization from Macroscale to Nanoscale

被引:52
作者
Hunt H.B. [1 ]
Donnelly E. [1 ,2 ]
机构
[1] Department of Materials Science and Engineering, Cornell University, 227 Bard Hall, Ithaca, 14853, NY
[2] Hospital for Special Surgery, New York, NY
来源
Clinical Reviews in Bone and Mineral Metabolism | 2016年 / 14卷 / 3期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bone quality; Computed tomography; Electron microscopy; Fourier transform infrared imaging; Mechanical testing; Microindentation; Nanoindentation; Raman imaging; Reference point indentation; Vibrational spectroscopy;
D O I
10.1007/s12018-016-9222-4
中图分类号
学科分类号
摘要
This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high-resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:133 / 149
页数:16
相关论文
共 138 条
  • [1] Kanis J.A., Johnell O., Oden A., Dawson A., De Laet C., Jonsson B., Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds, Osteoporos Int, 12, 12, pp. 989-995, (2001)
  • [2] Donnelly E., Lane J.M., Boskey A.L., Research perspectives: the 2013 AAOS/ORS research symposium on bone quality and fracture prevention, J Orthop Res, 32, 7, pp. 855-864, (2014)
  • [3] Berger A., Magnetic resonance imaging, BMJ, 324, 7328, (2002)
  • [4] Choel L., Last D., Duboeuf F., Seurin M.J., Lissac M., Briguet A., Guillot G., Choel L., Last D., Duboeuf F., Seurin M.J., Lissac M., Briguet A., Guillot G., Trabecular alveolar bone microarchitecture in the human mandible using high resolution magnetic resonance imaging, Dentomaxillofacial Radiol., 33, 3, pp. 177-182, (2004)
  • [5] Krug R., Burghardt A.J., Majumdar S., Link T.M., High-resolution imaging techniques for the assessment of osteoporosis, Radiol Clin N Am., 48, 3, pp. 601-621, (2010)
  • [6] Chang G., Deniz C.M., Honig S., Egol K., Regatte R.R., Zhu Y., Sodickson D.K., Brown R., MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging, J Magn Reson Imaging, 39, 6, pp. 1384-1393, (2014)
  • [7] Magland J.F., Rajapakse C.S., Wright A.C., Acciavatti R., Wehrli F.W., 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla, Magn Reson Med, 63, 3, pp. 719-727, (2010)
  • [8] Majumdar S., Magnetic resonance imaging of trabecular bone structure, Top Magn Reson Imaging, 13, 5, pp. 323-334, (2002)
  • [9] Wehrli F.W., Ladinsky G.A., Jones C., Benito M., Magland J., Vasilic B., Popescu A.M., Zemel B., Cucchiara A.J., Wright A.C., Song H.K., Saha P.K., Peachey H., Snyder P.J., In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol, J Bone Miner Res, 23, 5, pp. 730-740, (2008)
  • [10] Majumdar S., Genant H.K., Grampp S., Newitt D.C., Truong V.H., Lin J.C., Mathur A., Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging, J Bone Miner Res, 12, 1, pp. 111-118, (1997)