A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise

被引:5
作者
Neuenkirch A. [1 ]
Tindel S. [2 ]
机构
[1] Institut für Mathematik, Universität Mannheim, 68131 Mannheim, A5
[2] Institut Élie Cartan, Université de Lorraine, 54506 Vandœuvre-lès-Nancy Cedex
关键词
Ergodicity; Fractional Brownian motion; Least square procedure; Parameter estimation;
D O I
10.1007/s11203-013-9084-z
中图分类号
学科分类号
摘要
We study a least square-type estimator for an unknown parameter in the drift coefficient of a stochastic differential equation with additive fractional noise of Hurst parameter H > 1/2. The estimator is based on discrete time observations of the stochastic differential equation, and using tools from ergodic theory and stochastic analysis we derive its strong consistency. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:99 / 120
页数:21
相关论文
共 34 条
[1]  
Arnold L., Random Dynamical Systems, (1997)
[2]  
Begyn A., Quadratic variations along irregular subdivisions for Gaussian processes, Electronic J. Probab., 10, pp. 691-717, (2005)
[3]  
Belfadli R., Es-Sebaiy K., Ouknine Y., Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. In: Frontiers in Science and Engineering, Edited by Hassan II Academy of Science and Technology, 1, pp. 1-16, (2011)
[4]  
Bender C., Sottinen T., Valkeila E., Pricing by hedging and no-arbitrage beyond semimartingales, Finance Stoch., 12, pp. 441-468, (2008)
[5]  
Berzin C., Leon J.R., Estimation in models driven by fractional Brownian motion, Ann. Inst. Henri Poincaré Probab. Stat., 44, 2, pp. 191-213, (2008)
[6]  
Chronopoulou A., Tindel S., On inference for fractional differential equations, (2011)
[7]  
Coeurjolly J.F., Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths, Stat. Infer. Stoch. Process., 4, 2, pp. 199-227, (2001)
[8]  
Crauel H., Debussche A., Flandoli F., Random Attractors. J. Dyn. Diff. Eqns., 9, pp. 307-341, (1997)
[9]  
Denk G., Meintrup D., Schaffler S., Transient noise simulation: Modeling and simulation of 1/f-noise, Modeling, simulation and optimization of integrated circuits, pp. 251-267, (2001)
[10]  
Florens-Zmirou D., Approximate discrete-time schemes for statistics of diffusion processes, Statistics, 20, 4, pp. 547-557, (1989)