Extremal values of the atom-bond sum-connectivity index in bicyclic graphs

被引:0
作者
Kannan Aarthi
Suresh Elumalai
Selvaraj Balachandran
Sourav Mondal
机构
[1] SRM Institute of Science and Technology,Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology
[2] SASTRA Deemed University,Department of Mathematics, School of Arts, Sciences and Humanities
[3] Sungkyunkwan University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Topological index; Atom-bond sum-connectivity index; Bicyclic graphs; 05C07; 05C90; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with V(G) and E(G), as vertex set and edge set respectively. The atom-bond sum-connectivity index is a degree-based topological index which is defined as ABS(G)=∑uv∈E(G)du+dv-2du+dv,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ABS(G)=\sum \limits _{uv\in E(G)}\sqrt{\dfrac{d_u+d_v-2}{d_u+d_v}}, \end{aligned}$$\end{document}where the degree of the vertex u is denoted by du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document}. In this article, our focus lies on investigating the maximum value of atom-bond sum-connectivity among the class of bicyclic graphs on n vertices. In addition, the role of atom-bond sum-connectivity in explaining structure–property relationship is also demonstrated.
引用
收藏
页码:4269 / 4285
页数:16
相关论文
共 38 条
  • [1] Ali A(2022)Atom-bond sum-connectivity index J. Math. Chem. 60 2081-093
  • [2] Furtula B(2023)Atom-bond sum-connectivity index of unicyclic graphs and some applications Electron. J. Math. 5 1-7
  • [3] Redžepović I(2007)A unifed approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs MATCH Commun. Math. Comput. Chem. 57 597-616
  • [4] Gutman I(1998)An atom-bond connectivity index: modelling the enthalpy of formation of alkanes Indian J. Chem. Sec. A 37 849-855
  • [5] Ali A(2022)On the difference between atom-bond sum-connectivity and sum-connectivity indices Bull. Cl. Sci. Math. Nat. Sci. Math. 47 55-65
  • [6] Gutman I(2013)The sum-connectivity index: an additive variant of the Randić connectivity index Curr. Comput. Aided Drug Des. 9 184-194
  • [7] Redžepović I(2009)Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons Chem. Phys. Lett. 475 146-148
  • [8] Deng H(2023)Smallest ABS index of unicyclic graphs with given girth J. Appl. Math. Comput. 12 26-28
  • [9] Estrada E(2023)Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves Discrete Math. Lett. 97 6609-6615
  • [10] Torres L(1975)Characterization of molecular branching J. Am. Chem. Soc. 20 19-35