Application of the chebyshev-fourier pseudospectral method to the eigenvalue analysis of circular mindlin plates with free boundary conditions

被引:0
作者
Jinhee Lee
机构
[1] Hongik University,Depertment of Mechano
来源
KSME International Journal | 2003年 / 17卷
关键词
Eigenvalue; Chebyshev-Fourier Pseudospectral Method; Circular Mindlin Plate;
D O I
暂无
中图分类号
学科分类号
摘要
An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though the eigenvalues of lower vibration modes tend to convergence more slowly than those of higher vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. The eigenvalues of the axisymmetric modes are computed separately. Numerical results are provided for different grid resolutions and for different thickness-to-radius ratios.
引用
收藏
页码:1458 / 1465
页数:7
相关论文
共 24 条
[1]  
Deresiewicz H.(1956)Symmetric Flexural Vibrations of a Clamped Disk Journal of Applied Mechanics 12 319-319
[2]  
Deresiewicz H.(1955)Axially Symmetric Flexural Vibration of a Circular Disk Transactions of ASME Journal of Applied Mechanics 22 86-88
[3]  
Mindlin R. D.(1985)Axisymmetric Vibrations of Polar Orthotropic Mindlin Annular Plates of Variable Thickness Journal of Sound and Vibration 98 565-573
[4]  
Gupta U. S.(1979)Free Vibration of a Mindlin Annular Plate of Varying Thickness Journal of Sound and Vibration 66 187-197
[5]  
Lai R.(1980)Natural Modes and Natural Frequencies of Mindlin Circular Plates Journal of Applied Mechanics 47 652-655
[6]  
Irie. T.(1982)Natural Frequencies of Thick Annular Plates Journal of Applied Mechanics 49 633-638
[7]  
Yamada G.(2002)Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method Transactions of KSME A 26 1169-1177
[8]  
Aomura S.(2003)Eigenvalue Analysis of Rectangular Mindlin Plates by Chebyshev Pseu-dospectral Method KSME International Journal 17 370-379
[9]  
Irie T.(1997)Vibration Analysis of Circular Mindlin Plates Using Differential Quadrature Method Journal of Sound and Vibration 205 617-630
[10]  
Yamada G.(1984)Application of the Collocation Method to Vibration Analysis of Rectangular Mindlin Plates Computers & Structures 18 425-432