Duality for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant Besov spaces

被引:0
作者
Guanlong Bao
Zengjian Lou
Xiaojing Zhou
机构
[1] Shantou University,Department of Mathematics
关键词
Möbius group; Möbius invariant spaces; Besov spaces; Bloch type space; 30H25; 46E15; 30H30;
D O I
10.1007/s43037-023-00285-y
中图分类号
学科分类号
摘要
For 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, Besov spaces Bαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^p_\alpha $$\end{document} play a key role in the theory of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant function spaces. In some sense, Bα1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^1_\alpha $$\end{document} is the minimal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant function space, Bα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^2_\alpha $$\end{document} is the unique α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant Hilbert space, and Bα∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^\infty _\alpha $$\end{document} is the maximal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant function space. In this paper, under the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant pairing and by the space Bα∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^\infty _\alpha $$\end{document}, we identify the predual and dual spaces of Bα1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^1_\alpha $$\end{document}. In particular, the corresponding identifications are isometric isomorphisms. The duality theorem via the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant pairing for Bαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^p_\alpha $$\end{document} with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} is also given.
引用
收藏
相关论文
共 26 条
[1]  
Aleman A(2021)Weighted conformal invariance of Banach spaces of analytic functions J. Funct. Anal. 280 12-37
[2]  
Mas A(1974)On Bloch functions and normal functions J. Reine Angew. Math. 270 449-462
[3]  
Anderson J(1985)The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces Ill. J. Math. 29 110-145
[4]  
Cluenie J(1985)Möbius invariant function spaces J. Reine Angew. Math. 363 101-121
[5]  
Pommerenke Ch(1995)On subspaces and subsets of BMOA and UBC Analysis 15 207-228
[6]  
Arazy J(2021)Actions of the Möbius group on analytic functions Studia Math. 260 369-385
[7]  
Fisher S(1999)Fractional integration, differentiation, and weighted Bergman spaces Math. Proc. Camb. Philos. Soc. 126 85-109
[8]  
Arazy J(2022)Möbius-invariant harmonic function spaces on the unit disc Anal. Math. 48 45-49
[9]  
Fisher S(2021)Kelvin-Möbius-invariant harmonic function spaces on the real unit ball J. Math. Anal. Appl. 503 1143-1177
[10]  
Peetre J(1979)An extremal property of the Bloch space Proc. Am. Math. Soc. 75 89-101