H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{\infty } $$\end{document} Filtering for Discrete-Time Singular Markovian Jump Systems with Generally Uncertain Transition Rates

被引:0
|
作者
Anyou Shen
Lin Li
Chunyu Li
机构
[1] University of Shanghai for Science and Technology,Department of Control Science and Engineering
关键词
filtering; Discrete-time singular systems; Markovian jump systems; Generally uncertain transition rates;
D O I
10.1007/s00034-020-01626-0
中图分类号
学科分类号
摘要
This paper is devoted to the problem of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{\infty } $$\end{document} filtering for a class of discrete-time singular Markovian jump systems with generally uncertain transition rates. Each transition rate of the jumping process is completely unknown or only the estimated value is known. The objective is to design a H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{\infty } $$\end{document} filter such that the resulting filtering error system is stochastically admissible (regular, causal and stochastically stable) while satisfying a prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{\infty } $$\end{document} performance γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma $$\end{document}. Sufficient conditions are derived that can guarantee the filtering error system is H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{\infty } $$\end{document} stochastically admissible. Moreover, explicit expression of the filter gains is obtained by solving a set of strict linear matrix inequalities. Finally, a numerical example is included to illustrate the effectiveness of the proposed method.
引用
收藏
页码:3204 / 3226
页数:22
相关论文
共 45 条