Robust genetic machine learning ensemble model for intrusion detection in network traffic

被引:0
|
作者
Muhammad Ali Akhtar
Syed Muhammad Owais Qadri
Maria Andleeb Siddiqui
Syed Muhammad Nabeel Mustafa
Saba Javaid
Syed Abbas Ali
机构
[1] NED University of Engineering and Technology,Department of Computer and Information System Engineering
[2] NED University of Engineering and Technology,Department of Computer Science and Information Technology
[3] NED University of Engineering and Technology,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Network security has developed as a critical research subject as a result of the Rapid advancements in the development of Internet and communication technologies over the previous decades. The expansion of networks and data has caused cyber-attacks on the systems, making it difficult for network security to detect breaches effectively. Current Intrusion Detection Systems (IDS) have several flaws, including their inability to prevent attacks on their own, the requirement for a professional engineer to administer them, and the occurrence of false alerts. As a result, a plethora of new attacks are being created, making it harder for network security to properly detect breaches. Despite the best efforts, IDS continues to struggle with increasing detection accuracy while lowering false alarm rates and detecting new intrusions. Therefore, network intrusion detection enhancement by preprocessing and generation of highly reliable algorithms is the main focus nowadays. Machine learning (ML) based IDS systems have recently been implemented as viable solutions for quickly detecting intrusions across the network. In this study, we use a combined data analysis technique with four Robust Machine learning ensemble algorithms, including the Voting Classifier, Bagging Classifier, Gradient Boosting Classifier, and Random Forest-based Bagging algorithm along with the proposed Robust genetic ensemble classifier. For each algorithm, a model is created and tested using a Network Dataset. To assess the performance of both algorithms in terms of their ability to anticipate the anomaly occurrence, graphs of performance rates have been evaluated. The suggested algorithm outperformed other methods as it shows the lowest values of mean square error (MSE) and mean absolute error (MAE). The experiments were conducted on the Network traffic dataset available on Kaggle, on the Python platform, which has limited samples. The proposed method can be applied in the future with more machine learning ensemble classifiers and deep learning techniques.
引用
收藏
相关论文
共 50 条
  • [1] Robust genetic machine learning ensemble model for intrusion detection in network traffic
    Akhtar, Muhammad Ali
    Qadri, Syed Muhammad Owais
    Siddiqui, Maria Andleeb
    Mustafa, Syed Muhammad Nabeel
    Javaid, Saba
    Ali, Syed Abbas
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [2] A Robust Intrusion Detection System using Ensemble Machine Learning
    Divakar, Subham
    Priyadarshini, Rojalina
    Mishra, Brojo Kishore
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 348 - 351
  • [3] An Adaptive Ensemble Machine Learning Model for Intrusion Detection
    Gao, Xianwei
    Shan, Chun
    Hu, Changzhen
    Niu, Zequn
    Liu, Zhen
    IEEE ACCESS, 2019, 7 : 82512 - 82521
  • [4] A Network Intrusion Detection System Using Ensemble Machine Learning
    Kiflay, Aklil Zenebe
    Tsokanos, Athanasios
    Kirner, Raimund
    2021 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2021,
  • [5] Ensuring network security with a robust intrusion detection system using ensemble-based machine learning
    Hossain, Md Alamgir
    Islam, Saiful
    ARRAY, 2023, 19
  • [6] A stacked ensemble learning model for intrusion detection in wireless network
    Hariharan Rajadurai
    Usha Devi Gandhi
    Neural Computing and Applications, 2022, 34 : 15387 - 15395
  • [7] A stacked ensemble learning model for intrusion detection in wireless network
    Rajadurai, Hariharan
    Gandhi, Usha Devi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15387 - 15395
  • [8] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE Access, 2021, 9 : 7550 - 7563
  • [9] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563
  • [10] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Ben Slimane, Jihane
    Abd-Elkawy, Eman H.
    Maqbool, Albia
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2140 - 2149