Essential Norm of Toeplitz Operators on the Fock Spaces

被引:0
作者
Zhangjian Hu
Jin Lu
机构
[1] Huzhou University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2015年 / 83卷
关键词
Toeplitz operator; Hankel operator; Fock space; Essential norm; Primary 47B38; Secondary 32A36; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that, on the generalized Fock space Fp(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F^p(\varphi)}$$\end{document} with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 < p < \infty}$$\end{document} , the essential norm of a noncompact Toeplitz operator Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\mu}$$\end{document} with |μ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mu|}$$\end{document} being a Fock–Carleson measure equals its distance to the set of compact Toeplitz operators. Moreover, the distance is realized by infinitely many compact Toeplitz operators. Our approach is also available on the Bergman space setting.
引用
收藏
页码:197 / 210
页数:13
相关论文
共 25 条
[1]  
Agbor D.(2012)Bounded and compact operators on the Bergman space J. Math. Anal. Appl. 388 344-360
[2]  
Axler S.(1979) in the unit ball Ann. Math. 109 601-612
[3]  
Berg I.D.(1980)Approximation by compact operators and the space Trans. Am. Math. Soc. 1 159-167
[4]  
Jewell N.(1987)The essential norm of an operator and its adjoint Trans. Am. Math. Soc. 301 813-829
[5]  
Shields A.(1991)Toeplitz operators on the Segal–Bargmann space J. Geom. Anal. 1 193-230
[6]  
Axler S.(1998)On the Ann. Inst. Fourier (Grenoble) 48 967-997
[7]  
Jewll N.(2011) equation in weighted Integr. Equ. Oper. Theory 70 541-559
[8]  
Shields A.(2014) norms in Integr. Equ. Oper. Theory 80 33-59
[9]  
Berger C.A.(2010)Pointwise estimates for the weighted Bergman projection kernel in Integr. Equ. Oper. Theory 66 593-611
[10]  
Coburn L.A.(2005) , using a weighted Int. Math. Res. Not. 22 1307-1329