Multipole Expansion of the Fundamental Solution of a Fractional Degree of the Laplace Operator

被引:0
|
作者
Belevtsov N.S. [1 ]
Lukashchuk S.Y. [1 ]
机构
[1] Ufa State Aviation Technical University, Ufa
关键词
35J08; 35R11; fast multipole method; fractional Laplacian; fundamental solution; multipole expansion; numerical algorithm;
D O I
10.1007/s10958-023-06696-4
中图分类号
学科分类号
摘要
A multipole expansion of the fundamental solution of the fractional power of the Laplace operator is constructed in terms of the Gegenbauer polynomials. Based on the decomposition constructed and the idea of the fast multipole method, we propose a numerical algorithm for solving the fractional differential generalization of the Poisson equation in the two-dimensional and three-dimensional spaces. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:548 / 555
页数:7
相关论文
共 50 条
  • [21] Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator
    Agarwal, Ritu
    Jain, Sonal
    Agarwal, R. P.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3545 - 3554
  • [22] FUNDAMENTAL SOLUTION FOR A SUBELLIPTIC OPERATOR
    FOLLAND, GB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) : 373 - 376
  • [23] Peanut Harmonic Expansion for a Fundamental Solution of Laplace’s Equation in Flat-Ring Coordinates
    L. Bi
    H. S. Cohl
    H. Volkmer
    Analysis Mathematica, 2022, 48 : 961 - 989
  • [24] Peanut Harmonic Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Coordinates
    Bi, L.
    Cohl, H. S.
    Volkmer, H.
    ANALYSIS MATHEMATICA, 2022, 48 (04) : 961 - 989
  • [25] Degree preservation for the p-Laplace operator and applications
    Lassoued, Lotfi
    Maalaoui, Ali
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (02): : 18 - 26
  • [26] Fractional Laplace Operator and Meijer G-function
    Bartłomiej Dyda
    Alexey Kuznetsov
    Mateusz Kwaśnicki
    Constructive Approximation, 2017, 45 : 427 - 448
  • [27] Refined semiclassical asymptotics for fractional powers of the Laplace operator
    Frank, Rupert L.
    Geisinger, Leander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 712 : 1 - 37
  • [28] Fractional Laplace Operator and Meijer G-function
    Dyda, Bartlomiej
    Kuznetsov, Alexey
    Kwasnicki, Mateusz
    CONSTRUCTIVE APPROXIMATION, 2017, 45 (03) : 427 - 448
  • [29] On the fractional P-Q laplace operator with weights
    Thi Khieu, Tran
    Nguyen, Thanh-Hieu
    APPLICABLE ANALYSIS, 2024, 103 (07) : 1314 - 1335
  • [30] Regularity of the obstacle problem for a fractional power of the Laplace operator
    Silvestre, Luis
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (01) : 67 - 112