Nernst effect and dimensionality in the quantum limit

被引:73
作者
Zhu, Zengwei [1 ,2 ]
Yang, Huan [1 ]
Fauque, Benoit [1 ]
Kopelevich, Yakov [3 ]
Behnia, Kamran [1 ]
机构
[1] UPMC, CNRS, ESPCI, Lab Photons & Mat, F-75005 Paris, France
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
BAND-STRUCTURE; GRAPHITE; GRAPHENE; SYSTEMS; HALL;
D O I
10.1038/NPHYS1437
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Nernst effect has recently emerged as a very sensitive, yet poorly understood, probe of electron organization in solids(1-4). Graphene, a single layer of carbon atoms set in a honeycomb lattice, embeds a two-dimensional gas of massless electrons(5) and hosts a particular version of the quantum Hall effect(6,7). Recent experimental investigations of its thermoelectric response(8-10) are in agreement with the theory conceived for a two-dimensional electron system in the quantum Hall regime(11,12). Here, we report on a study of graphite(13), a macroscopic stack of graphene layers, which establishes a fundamental link between the dimensionality of an electronic system and its Nernst response. In striking contrast with the single-layer case, the Nernst signal sharply peaks whenever a Landau level meets the Fermi level. Thus, the degrees of freedom provided by finite interlayer coupling lead to an enhanced thermoelectric response in the vicinity of the quantum limit. As Landau quantization slices a three-dimensional Fermi surface, each intersection of a Landau level with the Fermi level modifies the Fermi-surface topology. According to our results, the most prominent signature of such a topological phase transition emerges in the transverse thermoelectric response.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 29 条
[11]   Transport of Dirac quasiparticles in graphene: Hall and optical conductivities [J].
Gusynin, V. P. ;
Sharapov, S. G. .
PHYSICAL REVIEW B, 2006, 73 (24)
[12]   THERMOELECTRIC EFFECT IN A WEAKLY DISORDERED INVERSION LAYER SUBJECT TO A QUANTIZING MAGNETIC-FIELD [J].
JONSON, M ;
GIRVIN, SM .
PHYSICAL REVIEW B, 1984, 29 (04) :1939-1946
[13]  
LIFSHITZ IM, 1960, SOV PHYS JETP, V11, P1130
[14]   Hall and Nernst effects in some models of anisotropic metals [J].
Livanov, DV .
PHYSICAL REVIEW B, 1999, 60 (19) :13439-13443
[15]   Dirac and normal fermions in graphite and graphene: Implications of the quantum hall effect [J].
Luk'yanchuk, Igor A. ;
Kopelevich, Yakov .
PHYSICAL REVIEW LETTERS, 2006, 97 (25)
[16]   BAND STRUCTURE OF GRAPHITE AND DEHAAS-VANALPHEN EFFECT [J].
MCCLURE, JW .
PHYSICAL REVIEW, 1957, 108 (03) :612-618
[17]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[18]   THERMOMAGNETIC EFFECTS IN TWO-DIMENSIONAL ELECTRON-SYSTEMS [J].
OJI, H .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (17) :3059-3066
[19]   Observation of the Nernst signal generated by fluctuating Cooper pairs [J].
Pourret, A. ;
Aubin, H. ;
Lesueur, J. ;
Marrache-Kikuchi, C. A. ;
Berge, L. ;
Dumoulin, L. ;
Behnia, K. .
NATURE PHYSICS, 2006, 2 (10) :683-686
[20]   Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations [J].
Schneider, J. M. ;
Orlita, M. ;
Potemski, M. ;
Maude, D. K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (16)