Structure-guided discovery approach identifies potential lead compounds targeting Mpro of SARS-CoV-2

被引:3
作者
Elmessaoudi-Idrissi M. [1 ,2 ]
Tsukiyama-Kohara K. [3 ]
Nourlil J. [4 ]
Kettani A. [2 ]
Windisch M.P. [5 ]
Kohara M. [6 ]
Malik Y.S. [7 ]
Dhama K. [8 ]
Benjelloun S. [1 ]
Ezzikouri S. [1 ,3 ]
机构
[1] Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc 1, Place Louis Pasteur, Casablanca
[2] Laboratoire de Biologie Et Santé (URAC34), Département de Biologie, Faculté Des Sciences Ben Msik, Université Hassan II de Casablanca, Casablanca
[3] Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima
[4] Medical Virology and BSL3 Laboratory, Institut Pasteur du Maroc, Casablanca
[5] Applied Molecular Virology Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do
[6] Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo
[7] Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh
[8] Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh
关键词
COVID-19; Inhibitors; Protease; SARS-CoV-2; Therapy; Zinc;
D O I
10.1007/s13337-020-00627-6
中图分类号
学科分类号
摘要
The ongoing coronavirus disease 19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become fatal for the world with affected population crossing over 25 million in more than 217 countries, consequently declared a global pandemic by the World Health Organization. Unfortunately, neither specific prophylactic or therapeutic drugs nor vaccines are available. To address the unmet medical needs, we explored a strategy identifying new compounds targeting the main protease (Mpro) of SARS-CoV-2. Targeting the SARS-CoV-2 Mpro crystal structure (PDB ID: 6LU7) a combination of in silico screening, molecular docking, and dynamic approaches, a set of 5000 compounds of the ZINC database were screened. As a result, we identified and ranked the top 20 compounds based on the scores of ligand-interaction, their drug-likeness properties, and their predicted antiviral efficacies. The prominent drug-like and potent inhibitory compounds are 2-[2-(2-aminoacetyl) aminoacetyl] amino-3-(4-hydroxyphenyl)-propanamide (ZINC000004762511), 6′-fluoroaristeromycin (ZINC000001483267) and cyclo (L-histidyl-L-histidyl) (ZINC000005116916) scaffolds. Further in vitro and in vivo validations are required to demonstrate anti-SARS-CoV-2 activities. © 2020, Indian Virological Society.
引用
收藏
页码:549 / 553
页数:4
相关论文
共 26 条
[1]  
The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol, (2020)
[2]  
Weekly Epidemiological Update
[3]  
Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W., A Novel Coronavirus from Patients with Pneumonia in China, 2019, N Engl J Med., 382, pp. 727-733, (2020)
[4]  
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Clinical features of patients infected with 2019 novel coronavirus in Wuhan China, Lancet, 395, pp. 497-506, (2020)
[5]  
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med, 8, 4, pp. 420-422, (2020)
[6]  
Ahn J.Y., Sohn Y., Lee S.H., Cho Y., Hyun J.H., Baek Y.J., Jeong S.J., Kim J.H., Ku N.S., Yeom J.S., Roh J., Ahn M.Y., Chin B.S., Kim Y.S., Lee H., Yong D., Kim H.O., Kim S., Choi J.Y., Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea, J Korean Med Sci, 35, (2020)
[7]  
Duan K., Liu B., Li C., Zhang H., Yu T., Qu J., Zhou M., Chen L., Meng S., Hu Y., Peng C., Yuan M., Huang J., Wang Z., Yu J., Gao X., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang S., Zhou Z., Zhang L., Wang Y., Zhang Z., Deng K., Xia Z., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Z., Chen S., Chen Z., Zhang X., Yang X., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc Nat Acad Sc
[8]  
Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honore S., Colson P., Chabriere E., La Scola B., Rolain J.M., Brouqui P., Raoult D., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrobi Agents, 56, (2020)
[9]  
Kupferschmidt K., Cohen J., Race to find COVID-19 treatments accelerates, Science, 367, pp. 1412-1413, (2020)
[10]  
Kruse R.L., Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China, F1000Research, 9, (2020)