The rate of decay of stable periodic solutions for Duffing equation with Lp-conditions

被引:0
作者
Shuqing Liang
机构
[1] Jilin University,School of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2016年 / 23卷
关键词
Duffing equation; Hill’s equation; Periodic solutions; Stability; Decay rate; Primary 34C10; Secondary 34C10; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a new class of g(t, x), the existence, uniqueness and stability of 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\pi}$$\end{document}-periodic solution of Duffing equation x′′+cx′+g(t,x)=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x'' + cx' + g(t, x) = h(t)}$$\end{document} are presented. Moreover, the unique 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\pi}$$\end{document}-periodic solution is (exponentially asymptotically stable) and its rate of exponential decay c/2 is sharp. The new criterion characterizes gx′(t,x)-c2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{x}^{\prime}(t, x) - c^2/4}$$\end{document} with Lp-norms (p∈[1,∞])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(p \in [1, \infty])}$$\end{document}, and the classical criterion employs the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm. The advantage is that we can deal with the case that gx′(t,x)-c2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{x}^{\prime}(t, x) - c^2/4}$$\end{document} is beyond the optimal bounds of the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm, because of the difference between the Lp-norm and the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm.
引用
收藏
相关论文
共 53 条
[51]  
Li W.(undefined)undefined undefined undefined undefined-undefined
[52]  
Zitan A.(undefined)undefined undefined undefined undefined-undefined
[53]  
Ortega R.(undefined)undefined undefined undefined undefined-undefined