The rate of decay of stable periodic solutions for Duffing equation with Lp-conditions

被引:0
作者
Shuqing Liang
机构
[1] Jilin University,School of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2016年 / 23卷
关键词
Duffing equation; Hill’s equation; Periodic solutions; Stability; Decay rate; Primary 34C10; Secondary 34C10; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a new class of g(t, x), the existence, uniqueness and stability of 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\pi}$$\end{document}-periodic solution of Duffing equation x′′+cx′+g(t,x)=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x'' + cx' + g(t, x) = h(t)}$$\end{document} are presented. Moreover, the unique 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2\pi}$$\end{document}-periodic solution is (exponentially asymptotically stable) and its rate of exponential decay c/2 is sharp. The new criterion characterizes gx′(t,x)-c2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{x}^{\prime}(t, x) - c^2/4}$$\end{document} with Lp-norms (p∈[1,∞])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(p \in [1, \infty])}$$\end{document}, and the classical criterion employs the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm. The advantage is that we can deal with the case that gx′(t,x)-c2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{x}^{\prime}(t, x) - c^2/4}$$\end{document} is beyond the optimal bounds of the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm, because of the difference between the Lp-norm and the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document}-norm.
引用
收藏
相关论文
共 53 条
[1]  
Alonso J.M.(1995)Boundedness and global asymptotic stability of forced oscillator Nonlinear Anal. 25 297-309
[2]  
Ortega R.(2010)On comparison principles for the periodic Hill’s equation J. Lond. Math. Soc. 86 272-290
[3]  
Cabada A.(1997)On the stability of periodic solutions of the damped pendulum equation J. Math. Anal. Appl. 209 712-723
[4]  
Cid Á.J.(2003)Exact multiplicity for periodic solutions of Duffing type Nonlinear Anal. 55 115-124
[5]  
Čepička A.(2007)Rate of decay of stable periodic solutions of Duffing equations J. Differ. Equ. 236 493-503
[6]  
Drábek P.(2007)Existence, uniqueness and stability of periodic solutions of an equation of Duffing type Discrete Contin. Dyn. Syst. 18 793-807
[7]  
Jenšiková J.(1986)A multiplicity result for periodic solutions of forced nonlinear second order differential equations Bull. Lond. Math. Soc. 18 173-180
[8]  
Chen H.(2006)Optimal estimates on rotation number of almost periodic systems Z. Angew. Math. Phys. 57 183-204
[9]  
Li Y.(1982)The rotation number for almost periodic potentials Commun. Math. Phys. 84 403-438
[10]  
Hou X.(1998)Uniqueness of periodic solutions for asymptotically linear Duffing equations with strong forcing Topol. Methods Nonlinear Anal. 12 263-274