Shifted Appell Sequences in Clifford Analysis

被引:0
作者
Dixan Peña Peña
机构
[1] University of Aveiro,Department of Mathematics, Center for Research and Development in Mathematics and Applications
来源
Results in Mathematics | 2013年 / 63卷
关键词
12E10; 30G35; Clifford algebras; monogenic functions; Appell sequences; Cauchy–Kovalevskaya extension technique; Almansi–Fischer decomposition; Fueter’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present a generalization of the Appell sequences within the framework of Clifford analysis called shifted Appell sequences. It consists of sequences {Mn(x)}n ≥ 0 of monogenic polynomials satisfying the Appell condition (i.e. the hypercomplex derivative of each polynomial in the sequence equals, up to a multiplicative constant, its preceding term) such that the first term M0(x) = Pk(x) is a given but arbitrary monogenic polynomial of degree k defined in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{m+1}}$$\end{document}. In particular, we construct an explicit sequence for the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_0(x)=\mathbf{P}_k(\underline x)}$$\end{document} being an arbitrary homogeneous monogenic polynomial defined in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^m}$$\end{document}. The connection of this sequence with the so-called Fueter’s theorem will also be discussed.
引用
收藏
页码:1145 / 1157
页数:12
相关论文
共 54 条
[11]  
Sabadini I.(2009)Die funktionentheorie der differentialgleichungen Δ Adv. Appl. Clifford Algebras 19 51-61
[12]  
Sommen F.(1999) = 0 und ΔΔ Complex Var. Theory Appl. 39 199-228
[13]  
Colombo F.(2007) = 0 mit vier variablen Adv. Appl. Clifford Algebras 17 481-496
[14]  
Sabadini I.(2002)On Appell sets and the Fueter-Sce mapping Methods Appl. Anal. 9 273-289
[15]  
Sommen F.(2010)A hypercomplex derivative of monogenic functions in Arch. Math. (Brno) 46 339-349
[16]  
Delanghe R.(1998) and its applications Adv. Appl. Clifford Algebras 8 323-340
[17]  
Delanghe R.(1983)On the calculation of monogenic primitives Complex Var. Theory Appl. 2 139-150
[18]  
Fueter R.(2002)Generalizations of Fueter’s theorem Math. Methods Appl. Sci. 25 1541-1552
[19]  
Gürlebeck N.(1995)Canonical bases for Math. Nachr. 172 211-238
[20]  
Gürlebeck K.(2006)-modules of spherical monogenics in dimension 3 Results Math. 49 301-311