Shifted Appell Sequences in Clifford Analysis

被引:0
作者
Dixan Peña Peña
机构
[1] University of Aveiro,Department of Mathematics, Center for Research and Development in Mathematics and Applications
来源
Results in Mathematics | 2013年 / 63卷
关键词
12E10; 30G35; Clifford algebras; monogenic functions; Appell sequences; Cauchy–Kovalevskaya extension technique; Almansi–Fischer decomposition; Fueter’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present a generalization of the Appell sequences within the framework of Clifford analysis called shifted Appell sequences. It consists of sequences {Mn(x)}n ≥ 0 of monogenic polynomials satisfying the Appell condition (i.e. the hypercomplex derivative of each polynomial in the sequence equals, up to a multiplicative constant, its preceding term) such that the first term M0(x) = Pk(x) is a given but arbitrary monogenic polynomial of degree k defined in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{m+1}}$$\end{document}. In particular, we construct an explicit sequence for the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_0(x)=\mathbf{P}_k(\underline x)}$$\end{document} being an arbitrary homogeneous monogenic polynomial defined in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^m}$$\end{document}. The connection of this sequence with the so-called Fueter’s theorem will also be discussed.
引用
收藏
页码:1145 / 1157
页数:12
相关论文
共 54 条
[1]  
Appell P.(1880)Sur une classe de polynômes Ann. Sci. École Norm. Sup 9 119-144
[2]  
Bock S.(2010)On a generalized Appell system and monogenic power series Math. Methods Appl. Sci. 33 394-411
[3]  
Gürlebeck K.(2002)On conjugate harmonic functions in Euclidean space Math. Methods Appl. Sci. 25 1553-1562
[4]  
Brackx F.(2007)On monogenic primitives of monogenic functions Complex Var. Elliptic Equ. 52 1081-1100
[5]  
Delanghe R.(1878)Applications of Grassmann’s extensive algebra Am. J. Math. 1 350-358
[6]  
Sommen F.(2010)The Fueter mapping theorem in integral form and the Math. Methods Appl. Sci. 33 2050-2066
[7]  
Cação I.(2011)-functional calculus Commun. Pure Appl. Anal. 10 1165-1181
[8]  
Gürlebeck K.(2001)The inverse Fueter mapping theorem Comput. Methods Funct. Theory 1 107-153
[9]  
Clifford W.K.(2006)Clifford analysis: history and perspective Complex Var. Elliptic Equ. 51 959-970
[10]  
Colombo F.(1935)On primitives of monogenic functions Comm. Math. Helv 7 307-330