The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants

被引:0
|
作者
Michael James Van Oosten
Olimpia Pepe
Stefania De Pascale
Silvia Silletti
Albino Maggio
机构
[1] University of Naples Federico II,Department of Agricultural Science
来源
Chemical and Biological Technologies in Agriculture | / 4卷
关键词
Abiotic stress; Biostimulants; Bioeffectors; Microbial inoculants; Humic acid; Fulvic acid; Protein hydrolysates; Amino acids; Seaweed extracts; Bioprotection;
D O I
暂无
中图分类号
学科分类号
摘要
The use of bioeffectors, formally known as plant biostimulants, has become common practice in agriculture and provides a number of benefits in stimulating growth and protecting against stress. A biostimulant is loosely defined as an organic material and/or microorganism that is applied to enhance nutrient uptake, stimulate growth, enhance stress tolerance or crop quality. This review is intended to provide a broad overview of known effects of biostimulants and their ability to improve tolerance to abiotic stresses. Inoculation or application of extracts from algae or other plants have beneficial effects on growth and stress adaptation. Algal extracts, protein hydrolysates, humic and fulvic acids, and other compounded mixtures have properties beyond basic nutrition, often enhancing growth and stress tolerance. Non-pathogenic bacteria capable of colonizing roots and the rhizosphere also have a number of positive effects. These effects include higher yield, enhanced nutrient uptake and utilization, increased photosynthetic activity, and resistance to both biotic and abiotic stresses. While most biostimulants have numerous and diverse effects on plant growth, this review focuses on the bioprotective effects against abiotic stress. Agricultural biostimulants may contribute to make agriculture more sustainable and resilient and offer an alternative to synthetic protectants which have increasingly falling out of favour with consumers. An extensive review of the literature shows a clear role for a diverse number of biostimulants that have protective effects against abiotic stress but also reveals the urgent need to address the underlying mechanisms responsible for these effects.Graphical abstractBiostimulants have protective effects against abiotic stress.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [21] Role of microbes in alleviating abiotic stress in plants
    Soni, Renu
    Prakash, Geeta
    Sharma, Shweta
    Sinha, Dwaipayan
    Mishra, Reema
    PLANT SCIENCE TODAY, 2023, 10 (03): : 160 - 187
  • [22] The role of endophytes to combat abiotic stress in plants
    Ameen, Muaz
    Mahmood, Athar
    Sahkoor, Awais
    Zia, Muhammad Anjum
    Ullah, Muhammad Saad
    PLANT STRESS, 2024, 12
  • [23] The role of microRNA in abiotic stress response in plants
    N. V. Koroban
    A. V. Kudryavtseva
    G. S. Krasnov
    A. F. Sadritdinova
    M. S. Fedorova
    A. V. Snezhkina
    N. L. Bolsheva
    O. V. Muravenko
    A. A. Dmitriev
    N. V. Melnikova
    Molecular Biology, 2016, 50 : 337 - 343
  • [24] Enhancing Abiotic Stress Tolerance in Fruit Trees Using Microbial Biostimulants
    Albasri, Hibah M.
    Mawad, Asmaa M. M.
    Aldaby, Eman S. E.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2024, 18 (03) : 1454 - 1470
  • [25] Priming with Nanoscale Materials for Boosting Abiotic Stress Tolerance in Crop Plants
    Amritha, M. S.
    Sridharan, Kishore
    Puthur, Jos T.
    Dhankher, Om Parkash
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (35) : 10017 - 10035
  • [26] Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop
    Anuar, Muhammad Salahudin Kheirel
    Hashim, Amalia Mohd
    Ho, Chai Ling
    Wong, Mui-Yun
    Sundram, Shamala
    Saidi, Noor Baity
    Yusof, Mohd Termizi
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2023, 39 (05)
  • [27] Enhancing Plant Resilience to Abiotic Stress: The Power of Biostimulants
    Lau, Su-Ee
    Lim, Lucas Wei Tze
    Hamdan, Mohd Fadhli
    Chan, Colin
    Saidi, Noor Baity
    Ong-Abdullah, Janna
    Tan, Boon Chin
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2025, 94 (01) : 1 - 31
  • [28] Targeting Glycinebetaine for Abiotic Stress Tolerance in Crop Plants: Physiological Mechanism, Molecular Interaction and Signaling
    Hasanuzzaman, Mirza
    Banerjee, Aditya
    Bhuyan, M. H. M. Borhannuddin
    Roychoudhury, Aryadeep
    Al Mahmud, Jubayer
    Fujita, Masayuki
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2019, 88 (03): : 185 - 221
  • [29] Role of nitric oxide in tolerance of plants to abiotic stress
    Manzer H. Siddiqui
    Mohamed H. Al-Whaibi
    Mohammed O. Basalah
    Protoplasma, 2011, 248 : 447 - 455
  • [30] Editorial: Plant nutrition and biostimulants: regulators of secondary metabolites and crop productivity in both normal and abiotic stress conditions
    Pal, Probir Kumar
    Zlabur, Jana Sic
    Wu, Hong
    FRONTIERS IN PLANT SCIENCE, 2024, 15