On the Calculus of Limiting Subjets on Riemannian Manifolds

被引:0
作者
Mansoureh Alavi Hejazi
Seyedehsomayeh Hosseini
Mohamad R. Pouryayevali
机构
[1] University of Isfahan,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2013年 / 10卷
关键词
Primary 49J52; Secondary 58C20; Subhessians; Subjets; Second order subdifferential calculus; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper fuzzy calculus rules for subjets of order two on finite dimensional Riemannian manifolds are obtained. Then a second order singular subjet derived from a sequence of efficient subsets of symmetric matrices is introduced. Employing fuzzy calculus rules for subjets of order two and various qualification assumptions based on a second order singular subjet, calculus rules for limiting subjets on a finite dimensional Riemannian manifold are obtianed.
引用
收藏
页码:593 / 607
页数:14
相关论文
共 25 条
  • [1] Azagra D.(2005)Nonsmooth analysis and Hamilton- Jacobi equation on Riemannian manifolds J. Funct. Anal. 220 304-361
  • [2] Ferrera J.(2005)Proximal calculus on Riemannian manifolds Mediterr. J. Math. 2 437-450
  • [3] López-Mesas F.(2008)Viscosity solutions to second order partial diffrential equations on Riemannian manifolds J. Diffrential Equations 245 307-336
  • [4] Azagra D.(2007)Applications of proximal calculus to fixed point theory on Riemannian manifolds Nonlinear. Anal. 67 154-174
  • [5] Ferrera J.(2009)Invariant monotone vector fields on Riemannian manifolds Nonlinear Anal. 70 1850-1861
  • [6] Azagra D.(1992)User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. 27 1-67
  • [7] Ferrera J.(1995)The subdifferential of the sum of two functions in Banach spaces II, second-order case Bull. Austral. Math. Soc. 51 235-248
  • [8] Sanz B.(1998)Jets, generalized convexity, proximal normality and differences of functions Nonlinear Anal. 34 319-360
  • [9] Azagra D.(2011)Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds Nonlinear Anal 74 3884-3895
  • [10] Ferrera J.(1997)Limiting subhessians, limiting subjets and thier calculus Trans. Amer. Math. Soc. 349 789-807