Transcendence of infinite series over lattices

被引:0
作者
Siddhi S. Pathak
机构
[1] Pennsylvania State University,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Elliptic functions; Transcendence of infinite series; Lattice sums; 11J89;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$\end{document}where Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} is a two-dimensional lattice in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}, A(X) and B(X) are suitable polynomials over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}, with degA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg A$$\end{document}≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le $$\end{document}degB-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg B - 3$$\end{document}. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}.
引用
收藏
页码:971 / 992
页数:21
相关论文
共 14 条
[1]  
Brownawell WD(1977)The algebraic independence of Weierstrass functions and some related numbers Acta Arith. 33 111-149
[2]  
Kubota KK(1980)Algebraic independence of the values of elliptic function at algebraic points. Elliptic analogue of the Lindemann-Weierstrass theorem Invent. Math. 61 267-290
[3]  
Chudnovsky G(2016)An elliptic analogue of a theorem of Hecke Ramanujan J. 41 171-182
[4]  
Murty MR(2011)On the transcendence of certain infinite series Int. J. Number Theory 7 323-339
[5]  
Vatwani A(2016)A generalization of Euler’s theorem for Am. Math. Mon. 123 53-65
[6]  
Murty MR(1983)Variétés abéliennes et indépendance algébrique. II. Un analogue abélien du théorème de Lindemann-Weierstraß Invent. Math. 72 389-405
[7]  
Weatherby C(2019)An abelian analogue of Schanuel’s conjecture and applications Ramanujan J. 45 1-12
[8]  
Murty MR(1983)Über das Abelsche Analogon des Lindemannschen Satzes. I Invent. Math. 72 363-388
[9]  
Weatherby C(undefined)undefined undefined undefined undefined-undefined
[10]  
Philippon P(undefined)undefined undefined undefined undefined-undefined