An enhanced flux continuity three-dimensional finite element method for heterogeneous and anisotropic diffusion problems on general meshes

被引:0
作者
Ong Thanh Hai
Thi Hoai Thuong Nguyen
Anh Ha Le
Vuong Nguyen Van Do
机构
[1] University of Science,Department of Analysis, Faculty of Mathematics & Computer Science
[2] Ton Duc Thang University,Applied Computational Civil and Structural Engineering Research Group, Faculty of Civil Engineering
[3] Vietnam National University,undefined
来源
Journal of Engineering Mathematics | 2024年 / 145卷
关键词
Finite element; General meshes; Heterogeneous anisotropic (possibly discontinuous) diffusion; Numerical flux continuity; 65N30; 65N08; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
In this research, we present a novel enhanced flux continuity three-dimensional finite element method for heterogeneous and anisotropic (possibly discontinuous) diffusion problems on general meshes. We create a polygonal dual mesh Th∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h^*$$\end{document} and its submesh Th∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h^{**}$$\end{document} from a primal mesh Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h$$\end{document} in such a manner that a set number of adjacent tetrahedral elements of Th∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h^{**}$$\end{document} are united to form each dual control volume of Th∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h^*$$\end{document}, which corresponds to a primal vertex. The weak solution of the diffusion problem is approximated by the piecewise linear functions on the subdual mesh Th∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_h^{**}$$\end{document}. In order to capture the local continuity of numerical fluxes across the interfaces, the proposed scheme gives the auxiliary face unknowns interpolated by the multi-point flux approximation. Moreover, the consistency, coercive, and convergence properties of the method are presented within a rigorous theoretical framework. Numerical results are carried out to highlight accuracy and efficiency.
引用
收藏
相关论文
共 31 条
[1]  
Lai X(2015)A finite volume scheme for three-dimensional diffusion equations Commun Comput Phys 18 650-672
[2]  
Sheng Z(2006)A mixed finite volume scheme for anisotropic diffusion problems on any grid Numer Math 105 35-71
[3]  
Yuan G(2012)Vertex-centred discretization of multiphase compositional Darcy flows on general meshes Comput Geosci 16 987-1005
[4]  
Droniou J(2011)A 3D discrete duality finite volume method for nonlinear elliptic equations SIAM J Sci Comput 33 1739-1764
[5]  
Eymard R(2009)A 2D/3D discrete duality finite volume scheme. Application to ECG simulation IJFV Int J Finite Vol 6 1-24
[6]  
Eymard R(2017)A low-order finite element method for three dimensional linear elasticity problems with general meshes Comput Math Appl 74 1379-1398
[7]  
Herbin R(2015)Polyhedral mesh generation and a treatise on concave geometrical edges Procedia Eng 124 174-186
[8]  
Guichard C(2015)Polyhedral mesh generation and a treatise on concave geometrical edges Procedia Eng 124 174-186
[9]  
Masson R(2012)Small-stencil 3D schemes for diffusive flows in porous media ESAIM: M2AN 46 265-290
[10]  
Coudière Y(2010)Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. Sushi: a scheme using stabilization and hybrid interfaces IMA J Numer Anal 30 1009-1034