Balancing and Lucas-balancing numbers which are concatenation of three repdigits

被引:0
作者
S. G. Rayaguru
Jhon J. Bravo
机构
[1] Siksha ‘O’ Anusandhan Deemed to be University,Centre for Data Science
[2] Universidad del Cauca,Departamento de Matemáticas
来源
Boletín de la Sociedad Matemática Mexicana | 2023年 / 29卷
关键词
Balancing number; Lucas-balancing number; Repdigit; Linear forms in logarithms; 11J86; 11B39; 11B50; 11D72;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that 204 and 1189 are the only balancing numbers which are concatenation of three repdigits and that 3363 is the only Lucas-balancing number of this form.
引用
收藏
相关论文
共 39 条
  • [1] Alahmadi A(2019)Fibonacci numbers which are concatenations of two repdigits Quaest. Math. 44 281-290
  • [2] Altassan A(1999)On the square roots of triangular numbers Fibonacci Q. 37 98-105
  • [3] Luca F(2021)Tribonacci numbers with two blocks of redigits Math. Slovaca 71 267-274
  • [4] Shoaib H(2006)Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers Ann. Math. 163 969-1018
  • [5] Behera A(2020)Tribonacci numbers that are concatenations of two repdigits Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 203-284
  • [6] Panda GK(2021)Padovan numbers that are concatenations of two distinct repdigits Math. Slovaca 71 275-306
  • [7] Bravo E(1998)A generalization of a theorem of Baker and Davenport Q. J. Math. Oxford Ser. 49 291-60
  • [8] Bravo J(2021)Lucas numbers which are concatenations of three repdigits Results Math. 76 13-102
  • [9] Bugeaud Y(2015)Pell and Pell-lucas numbers with only one distinct digit Ann. Math. Inform. 45 55-68
  • [10] Maurice M(2018)On repdigits as product of consecutive Lucas numbers Notes Numb. Theory Disc. Math. 24 95-254