Conformal solitons for the mean curvature flow in hyperbolic space

被引:0
|
作者
L. Mari
J. Rocha de Oliveira
A. Savas-Halilaj
R. Sodré de Sena
机构
[1] Universitá degli Studi di Torino,Dipartimento di Matematica “Giuseppe Peano”
[2] Universidade Federal do Ceará,Departamento de Matemática
[3] Section of Algebra and Geometry University of Ioannina,Department of Mathematics
[4] Campus Tabuleiro do Norte,Departamento de Ensino, Instituto Federal do Ceará
来源
Annals of Global Analysis and Geometry | 2024年 / 65卷
关键词
Mean curvature flow; Solitons; Plateau’s problem; Dirichlet’s problem; Primary 53C44; 53A10; 53C21; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study conformal solitons for the mean curvature flow in hyperbolic space Hn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^{n+1}$$\end{document}. Working in the upper half-space model, we focus on horo-expanders, which relate to the conformal field -∂0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\partial _0$$\end{document}. We classify cylindrical and rotationally symmetric examples, finding appropriate analogues of grim-reaper cylinders, bowl and winglike solitons. Moreover, we address the Plateau and the Dirichlet problems at infinity. For the latter, we provide the sharp boundary convexity condition to guarantee its solvability and address the case of non-compact boundaries contained between two parallel hyperplanes of ∂∞Hn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _\infty \mathbb {H}^{n+1}$$\end{document}. We conclude by proving rigidity results for bowl and grim-reaper cylinders.
引用
收藏
相关论文
共 50 条
  • [1] Conformal solitons for the mean curvature flow in hyperbolic space
    Mari, L.
    de Oliveira, J. Rocha
    Savas-Halilaj, A.
    de Sena, R. Sodre
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (02)
  • [2] Conformal solitons to the mean curvature flow and minimal submanifolds
    Arezzo, C.
    Sun, J.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (8-9) : 772 - 790
  • [3] Hyperbolic mean curvature flow in Minkowski space
    Wang, Zenggui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 259 - 271
  • [4] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Luis J. Alías
    Jorge H. de Lira
    Marco Rigoli
    The Journal of Geometric Analysis, 2020, 30 : 1466 - 1529
  • [5] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Alias, Luis J.
    de Lira, Jorge H.
    Rigoli, Marco
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1466 - 1529
  • [6] Volume preserving mean curvature flow in the hyperbolic space
    Cabezas-Rivas, Esther
    Miquel, Vicente
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (05) : 2061 - 2086
  • [7] INVERSE MEAN CURVATURE FLOW IN COMPLEX HYPERBOLIC SPACE
    Pipoli, Giuseppe
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (05): : 1107 - 1135
  • [8] Inverse mean curvature flow in quaternionic hyperbolic space
    Pipoli, Giuseppe
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 153 - 171
  • [9] Inverse mean curvature flow with a free boundary in hyperbolic space
    Chai, Xiaoxiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [10] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390