Pairs of Complementary Unary Languages with “Balanced” Nondeterministic Automata

被引:0
作者
Viliam Geffert
Giovanni Pighizzini
机构
[1] P. J. Šafárik University,Department of Computer Science
[2] Università degli Studi di Milano,Dipartimento di Informatica e Comunicazione
来源
Algorithmica | 2012年 / 63卷
关键词
Finite state automata; State complexity; Unary regular languages; Unary automata;
D O I
暂无
中图分类号
学科分类号
摘要
For each sufficiently large n, there exists a unary regular language L such that both L and its complement Lc are accepted by unambiguous nondeterministic automata with at most n states, while the smallest deterministic automata for these two languages still require a superpolynomial number of states, at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e^{\Omega(\sqrt[3]{n\cdot\ln^{2}n})}$\end{document}. Actually, L and Lc are “balanced” not only in the number of states but, moreover, they are accepted by nondeterministic machines sharing the same transition graph, differing only in the distribution of their final states. As a consequence, the gap between the sizes of unary unambiguous self-verifying automata and deterministic automata is also superpolynomial.
引用
收藏
页码:571 / 587
页数:16
相关论文
共 27 条
[1]  
Anselmo M.(2010)Some results on the structure of unary unambiguous automata Adv. Appl. Math. 47 149-158
[2]  
Madonia M.(1986)Finite automata and unary languages Theor. Comput. Sci. 205 1652-1670
[3]  
Chrobak M.(2007)Magic numbers in the state hierarchy of finite automata Inf. Comput. 64 407-410
[4]  
Geffert V.(1995)The largest prime dividing the maximal order of an element of Math. Comput. 169 284-296
[5]  
Grantham J.(2001)On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata Inf. Comput. 2 163-182
[6]  
Hromkovič J.(1991)The structure and complexity of minimal nfa’s over a unary alphabet Int. J. Found. Comput. Sci. 3 92-103
[7]  
Schnitger G.(1903)Über die Maximalordnung der Permutation gegebenen Grades Arch. Math. Phys. V/2 337-355
[8]  
Jiang T.(1964)Bounds for the optimal determinization of nondeterministic autonomous automata Sib. Mat. Zh. 9 321-326
[9]  
McDowell E.(1963)A comparison of two types of finite automata Probl. Kibern. 330 349-360
[10]  
Ravikumar B.(2005)Complementing unary nondeterministic automata Theor. Comput. Sci. 30 1976-1992