Semi-Markov Control Models with Partially Known Holding Times Distribution: Discounted and Average Criteria

被引:0
作者
Fernando Luque-Vásquez
J. Adolfo Minjárez-Sosa
Luz del Carmen Rosas-Rosas
机构
[1] Universidad de Sonora,Departamento de Matemáticas
来源
Acta Applicandae Mathematicae | 2011年 / 114卷
关键词
Semi-Markov control processes; Discounted and average cost criteria; Minimax control systems; Games against nature; 90C40; 90C47; 93E20;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with a class of semi-Markov control models with Borel state and control spaces and possibly unbounded costs, where the holding times distribution F depends on an unknown and possibly non-observable parameter which may change from stage to stage. The system is modeled as a game against nature, which is a particular case of a minimax control system. The objective is to show the existence of minimax strategies under the discounted and average cost criteria.
引用
收藏
页码:135 / 156
页数:21
相关论文
共 40 条
  • [1] Altman E.(1995)Zero-sum Markov games and worst-case optimal control of queueing systems Queueing Syst. Theory Appl. 21 415-447
  • [2] Hordijk A.(2000)Mixed risk-neutral/minimax control of discrete-time finite state Markov decision process IEEE Trans. Autom. Control 45 528-532
  • [3] Coraluppi S.P.(1978)The optimality equation in average cost denumerable state semi-Markov decision problems. Recurrence conditions and algorithms J. Appl. Probab. 15 356-373
  • [4] Marcus S.I.(1983)Denumerable undiscounted semi-Markov decision processes with unbounded rewards Math. Oper. Res. 8 298-313
  • [5] Federgruen A.(2003)Minimax control of discrete-time stochastic systems SIAM J. Control Optim. 41 1626-1659
  • [6] Tijms H.C.(1997)Optimal control against worst case admission policies: A multichained stochastic game Math. Methods Oper. Res. 45 281-301
  • [7] Federgruen A.(1978)A minimax ordering policy for the infinite stage dynamic inventory problem Manag. Sci. 24 1138-1149
  • [8] Schweitzer P.J.(2001)An approximation approach to ergodic semi-Markov control processes Math. Methods Oper. Res. 54 1-19
  • [9] Tijms H.C.(2007)A fixed point approach to solve the average cost optimality equation for semi-Markov decision processes with Feller transition probabilities Commun. Stat., Theory Methods 36 2559-2575
  • [10] González-Trejo T.J.(2004)Markov decision processes with uncertain transition rates: sensitivity and max-min control Asian J. Control 6 253-269