Effective Thermal Conductivity of Composites with Contact Thermal Resistance between the Inclusions and the Matrix

被引:0
作者
Lavrov I.V. [1 ]
Kochetygov A.A. [1 ]
Bardushkin V.V. [1 ]
Sychev A.P. [2 ]
Yakovlev V.B. [1 ,3 ]
机构
[1] National Research University of Electronic Technology, Moscow
[2] Federal Research Centre the Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don
[3] Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow
基金
俄罗斯基础研究基金会;
关键词
composites; contact thermal resistance; effective thermal conductivity; generalized effective-field approximation; matrix; Maxwell-Garnett approximation; shell model; spherical inclusions;
D O I
10.3103/S1068798X20080134
中图分类号
TK1 [热力工程、热机];
学科分类号
080702 ;
摘要
Abstract: A method is proposed for predicting the effective thermal conductivity of a matrix composite with several types of spherical inclusions, in the case of contact thermal resistance at the matrix–inclusion boundary. The method is based on generalized effective-field approximation for a inhomogeneous medium containing inclusions that have an outer shell. As an example, calculations are presented for a matrix tribocomposite with two types of inclusions. © 2020, Allerton Press, Inc.
引用
收藏
页码:622 / 627
页数:5
相关论文
共 18 条
[1]  
Kolesnikov V.I., Teplofizicheskie Protsessy V Metallopolimernykh Tribosistemakh (Thermophysical Processes in Metalpolymeric Tribosystems), (2003)
[2]  
Every A.G., Tzou Y., Hasselman D.P.H., Raj R., The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metall. Mater, 40, (1992)
[3]  
Devpura A., Phelan P.E., Prasher R.S., Size effects on the thermal conductivity of polymers laden with highly conductive filler particles, Microscale Thermophys. Eng, 5, pp. 177-189, (2001)
[4]  
Kidalov S.V., Shakhov F.M., Thermal conductivity of diamond composites, Materials, 2, pp. 2467-2495, (2009)
[5]  
Pietrak K., Wisniewski T.S., Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials, J. Power Technol, 94, pp. 270-285, (2014)
[6]  
Pietrak K., Kubis M., Langowski M., Et al., Effect of particle shape and imperfect filler-matrix interface on effective thermal conductivity of epoxy-aluminum composite, Compos, Theory Pract., 4, pp. 183-188, (2017)
[7]  
Kapitsa P.L., The Study of Heat Transfer in Helium II, J. Phys. USSR, 4, (1941)
[8]  
Wait J.R., Geo-Electromagnetism, New-York, (1982)
[9]  
Maxwell-Garnett J.C., Colors in metal glasses and in metallic films, Philos, Trans. R. Soc., A, 203, pp. 385-420, (1904)
[10]  
Hasselman D.P.H., Johnson L.F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater, 21, pp. 508-515, (1987)