The Banach spaces associated with g-frames

被引:0
|
作者
Liang Li
Aifang Liu
机构
[1] Nanjing Audit University,College of Statistics and Data Science
[2] Taiyuan University of Technology,College of Mathematics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
G-frames; G-Riesz bases; Dilations; Dual g-frames; 42C15; 46L10; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the Banach spaces induced by a g-frame and lp(⊕i∈NHi),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(\oplus _{i\in {\mathbb{N}}} {H_i}),$$\end{document} where 1≤p<2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<2.$$\end{document} We study the different aspects of these spaces corresponding to reconstructions, existence and dilations. Specially, we obtain that for all closed subspaces of a Hilbert space H,  only the finite dimensional ones with a g-orthonormal basis can be realized as such a Banach space associated a g-frame. We also prove that under some conditions of the g-frame, the g-frame expansion of any element in the Banach space associated with it converges in both the Hilbert space norm and the associated Banach norm. Moreover, we give a dilation result of such space with the dilation properties of g-frames.
引用
收藏
相关论文
共 50 条
  • [1] The Banach spaces associated with g-frames
    Li, Liang
    Liu, Aifang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [2] Fusion frames and G-frames in Banach spaces
    Khosravi, Amir
    Khosravi, Behrooz
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (02): : 155 - 164
  • [3] G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES
    Najati, Abbas
    Faroughi, M. H.
    Rahimi, Asghar
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (03): : 271 - 286
  • [4] Controlled g-frames and dual g-frames in Hilbert spaces
    Hui-Min Liu
    Yan-Ling Fu
    Yu Tian
    Journal of Inequalities and Applications, 2023
  • [5] Controlled g-frames and dual g-frames in Hilbert spaces
    Liu, Hui-Min
    Fu, Yan-Ling
    Tian, Yu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [6] Characterizations of Disjointness of g-Frames and Constructions of g-Frames in Hilbert Spaces
    Guo, Xunxiang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (07) : 1547 - 1563
  • [7] G-FRAMES AND THEIR GENERALIZED MULTIPLIERS IN HILBERT SPACES
    Hosseinnezhad, Hessam
    Tabadkan, Gholamreza Abbaspour
    Rahimi, Asghar
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 180 - 195
  • [8] MULTIPLIERS OF CONTINUOUS G-FRAMES IN HILBERT SPACES
    Abdollahpour, M. R.
    Alizadeh, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (02): : 291 - 305
  • [9] On Weaving g-Frames for Hilbert Spaces
    Dongwei Li
    Jinsong Leng
    Tingzhu Huang
    Xiaoping Li
    Complex Analysis and Operator Theory, 2020, 14
  • [10] On Weaving g-Frames for Hilbert Spaces
    Li, Dongwei
    Leng, Jinsong
    Huang, Tingzhu
    Li, Xiaoping
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)