Continuous dependence of attractors on the shape of domain

被引:1
作者
Babin A.V.
Pilyugin S.Yu.
机构
关键词
Boundary Condition; Bounded Domain; Dirichlet Boundary; Dirichlet Boundary Condition; Global Attractor;
D O I
10.1007/BF02355582
中图分类号
学科分类号
摘要
Let Ω0 be a bounded domain in ℝn, let G be a family of diffeomorphisms, and let ΩG = G(Ω 0) for G ∈ G. Denote by Et(G) the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of ΩG. Let AG be the global attractor of E t(G). Conditions are given under which a generic diffeomorphism G ∈ G is a continuity point of the map G → AG. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:3304 / 3310
页数:6
相关论文
共 12 条
[1]  
Babin A.V., Vishik M.I., Attractors of evolution equations, Stud. Math. Appl., 25, (1992)
[2]  
Hale J.K., Asymptotic behavior of dissipative systems, Math. Surv. Monographs, 25, (1988)
[3]  
Ladyzhenskaya O.A., Attractors for Semi-groups and Evolution Equations, (1991)
[4]  
Pilyugin S.Yu., The space of dynamical systems with the C<sup>0</sup>-topology, Lect. Notes Math., 1571, (1994)
[5]  
Kuratovski K., Topology, (1966)
[6]  
Cooperman G., α-Condensing Maps and Dissipative Systems, (1978)
[7]  
Hale J.K., Lin X.B., Raugel G., Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comput., 50, pp. 89-123, (1988)
[8]  
Hale J.K., Magalhaes L., Oliva W., An introduction to infinite dimensional dynamical systems, Appl. Math. Sci., 47, (1984)
[9]  
Hale J.K., Raugel G., Lower semicontinuity of attractors of gradient systems and applications, Ann. Math. Pura Appl., 154, pp. 281-326, (1989)
[10]  
Hale J.K., Asymptotic behavior and dynamics in infinite dimensions, Nonlinear Differential Equations, Res. Notes in Math., 132, pp. 1-42, (1985)