On countably μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-paracompact spaces

被引:0
作者
M. M. Arar
机构
[1] Prince Sattam Bin Abdulaziz University,Department of Mathematics
关键词
generalized topological space; countably ; -paracompact; countably; -metacompact; countable ; -base; -separation; -locally finite; -open cover; 54A05; 54D10; 54D15; 54D30;
D O I
10.1007/s10474-016-0598-x
中图分类号
学科分类号
摘要
A topological space X is countably paracompact if and only if X satisfies the condition (A): For any decreasing sequence {Fi} of non-empty closed sets with ⋂i=1∞Fi=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcap_{i=1}^{\infty} F_{i} = \emptyset}$$\end{document} there exists a sequence {Gi} of open sets such that ⋂i=1∞Gi¯=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcap_{i=1}^{\infty}\overline{G_{i}}=\emptyset}$$\end{document} and Fi⊂Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{i} \subset G_{i}}$$\end{document} for every i. We will show, by an example, that this is not true in generalized topological spaces. In fact there is a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-normal generalized topological space satisfying the analogue of A which is not even countably μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-metacompact. Then we study the relationships between countably μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-paracompactness, countably μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-metacompactness and the condition corresponding to condition A in generalized topological spaces.
引用
收藏
页码:50 / 57
页数:7
相关论文
共 4 条
[1]  
Császár Á.(2002)Generalized topology. generalized continuity Acta Math Hungar., 96 351-357
[2]  
Császár Á.(2004)Separation axioms for generalized topologies Acta. Math. Hungar., 104 63-69
[3]  
Császár Á(2005)Generalized open sets in generalized topologies Acta. Math. Hungar., 106 53-66
[4]  
Ishikawa Fumie(1955)On countably paracompact spaces Proc. Japan Acad., 31 686-687