Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production

被引:0
|
作者
Frederik Trippe
Magnus Fröhling
Frank Schultmann
Ralph Stahl
Edmund Henrich
机构
[1] Karlsruhe Institute of Technology,Institute for Industrial Production
[2] Karlsruhe Institute of Technology,Institute for Technical Chemistry – Division of Chemical–Physical Processing
来源
Waste and Biomass Valorization | 2010年 / 1卷
关键词
Fast pyrolysis; Biomass-to-liquid; Techno-economic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the decentralized fast pyrolysis process step which converts biomass into a so-called biosyncrude consisting of pyrolysis liquids and char. The biosyncrude can be further processed to synthetic fuels via pressurized entrained flow gasification, gas cleaning and synthesis in biomass-to-liquid fuel production concepts such as the considered bioliq concept. This two-stage concept allows the economic and ecological transportation of biomass over long distances, due to the relatively high energy density of the biosyncrude produced in the first stage. In addition, reductions in specific investments and costs for further processing in the second stage are enabled by economies of scale. This paper addresses possibilities for the further process development and presents an outlook for a commercial implementation of a biomass-derived biosyncrude production. Within the techno-economic analysis, eight different configurations for the pyrolysis process are assessed and compared from an economic and energetic point of view to identify the currently most promising technology. The techno-economic analysis of the decentralized pyrolysis plant with a capacity of 100 MW thermal energy input concludes that at present, it is possible to produce the biosyncrude in Germany at costs of about 35 €/MWh compared to 22 €/MWh for natural gas or 15 €/MWh for coal which are inputs for coal-to-liquid and gas-to-liquid processes. Production costs for the biosyncrude consist of 50% biomass feedstock costs and 30% investment dependent costs; personnel and electric energy are only minor contributors.
引用
收藏
页码:415 / 430
页数:15
相关论文
共 50 条
  • [1] Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production
    Trippe, Frederik
    Froehling, Magnus
    Schultmann, Frank
    Stahl, Ralph
    Henrich, Edmund
    WASTE AND BIOMASS VALORIZATION, 2010, 1 (04) : 415 - 430
  • [2] Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production
    Trippe, Frederik
    Froehling, Magnus
    Schultmann, Frank
    Stahl, Ralph
    Henrich, Edmund
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (11) : 2169 - 2184
  • [3] Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose
    Zhang, Yanan
    Brown, Tristan R.
    Hu, Guiping
    Brown, Robert C.
    BIORESOURCE TECHNOLOGY, 2013, 127 : 358 - 365
  • [4] Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing
    Brown, Tristan R.
    Thilakaratne, Rajeeva
    Brown, Robert C.
    Hu, Guiping
    FUEL, 2013, 106 : 463 - 469
  • [5] Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer-Tropsch synthesis as alternative process steps within biomass-to-liquid production
    Trippe, Frederik
    Froehling, Magnus
    Schultmann, Frank
    Stahl, Ralph
    Henrich, Edmund
    Dalai, Ajay
    FUEL PROCESSING TECHNOLOGY, 2013, 106 : 577 - 586
  • [6] Techno-economic analysis of biomass to fuel conversion via the MixAlco process
    Pham, Viet
    Holtzapple, Mark
    El-Halwagi, Mahmoud
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2010, 37 (11) : 1157 - 1168
  • [7] Techno-economic analysis of levoglucosan production via fast pyrolysis of cotton straw in China
    Wang, Junqi
    Lu, Zhoumin
    Shah, Ajay
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (04): : 1085 - 1097
  • [8] Production of Hydrocarbon Fuel Using Two-Step Torrefaction and Fast Pyrolysis of Pine. Part 1: Techno-economic Analysis
    Winjobi, Olumide
    Shonnard, David R.
    Zhou, Wen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (06): : 4529 - 4540
  • [9] Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading
    Zhu, Yunhua
    Biddy, Mary J.
    Jones, Susanne B.
    Elliott, Douglas C.
    Schmidt, Andrew J.
    APPLIED ENERGY, 2014, 129 : 384 - 394
  • [10] Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: A life cycle assessment and techno-economic analysis
    Mohamed, Badr A.
    O'Boyle, Marnie
    Li, Loretta Y.
    APPLIED ENERGY, 2023, 346