An estimator of the tail index based on increment ratio statistics

被引:0
|
作者
Vaičiulis M. [1 ]
机构
[1] Institute of Mathematics and Informatics, Vilnius LT-08663
关键词
Central limit theorem; Domain of attraction; Increment ratio statistic; Tail index;
D O I
10.1007/s10986-009-9040-1
中图分类号
学科分类号
摘要
In this paper, we introduce an increment ratio statistic (IR N,m ) based estimator for estimation of the tail index of a heavy-tailed distribution. For i.i.d. observations depending on the zone of attraction of an α-stable law (0 < α < 2), the IR N,m statistic converges to a decreasing function L(α) as both the sample size N and bandwidth parameter m tend to infinity. We obtain a rate of decay of the bias EIR N,m -L(α) and mean square error E(IR N,m -L(α))2. A central limit theorem √N/m(IR N,m -EIR N,m) N(0,σ2(α)) is also obtained. Monte Carlo simulations show that our tail index estimator has quite good empirical mean square error and, unlike the Hill estimator, is not so sensitive to a change of bandwidth parameter m. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:222 / 233
页数:11
相关论文
共 50 条
  • [31] Regression estimators for the tail index
    Amenah AL-Najafi
    László L. Stachó
    László Viharos
    Acta Scientiarum Mathematicarum, 2021, 87 : 649 - 678
  • [32] A Class of Tests on the Tail Index
    Jana Jurečková
    Jan Picek
    Extremes, 2001, 4 (2) : 165 - 183
  • [33] Confidence intervals for the tail index
    Cheng, SH
    Peng, L
    BERNOULLI, 2001, 7 (05) : 751 - 760
  • [34] Regression estimators for the tail index
    Al-Najafi, Amenah
    Stacho, Laszlo L.
    Viharos, Laszlo
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 649 - 678
  • [35] Semiparametric Tail Index Regression
    Li, Rui
    Leng, Chenlei
    You, Jinhong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 82 - 95
  • [36] On the estimation of a changepoint in a tail index
    Gadeikis K.
    Paulauskas V.
    Lithuanian Mathematical Journal, 2005, 45 (3) : 272 - 283
  • [37] Empirical likelihood based inference for conditional Pareto-type tail index
    Ma, Yaolan
    Jiang, Yuexiang
    Huang, Wei
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 114 - 121
  • [38] Tail index varying coefficient model
    Ma, Yaolan
    Jiang, Yuexiang
    Huang, Wei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (02) : 235 - 256
  • [39] A class of bootstrap tests on the tail index
    Hwang, Eunju
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 1786 - 1804
  • [40] Robust Estimator of Conditional Tail Expectation of Pareto-Type Distribution
    Dalal Lala Bouali
    Fatah Benatia
    Brahim Brahimi
    Christophe Chesneau
    Journal of Statistical Theory and Practice, 2021, 15