An estimator of the tail index based on increment ratio statistics

被引:0
|
作者
Vaičiulis M. [1 ]
机构
[1] Institute of Mathematics and Informatics, Vilnius LT-08663
关键词
Central limit theorem; Domain of attraction; Increment ratio statistic; Tail index;
D O I
10.1007/s10986-009-9040-1
中图分类号
学科分类号
摘要
In this paper, we introduce an increment ratio statistic (IR N,m ) based estimator for estimation of the tail index of a heavy-tailed distribution. For i.i.d. observations depending on the zone of attraction of an α-stable law (0 < α < 2), the IR N,m statistic converges to a decreasing function L(α) as both the sample size N and bandwidth parameter m tend to infinity. We obtain a rate of decay of the bias EIR N,m -L(α) and mean square error E(IR N,m -L(α))2. A central limit theorem √N/m(IR N,m -EIR N,m) N(0,σ2(α)) is also obtained. Monte Carlo simulations show that our tail index estimator has quite good empirical mean square error and, unlike the Hill estimator, is not so sensitive to a change of bandwidth parameter m. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:222 / 233
页数:11
相关论文
共 50 条
  • [21] The Increment Ratio statistic under deterministic trends
    K. Bružaitė
    M. Vaičiulis
    Lithuanian Mathematical Journal, 2008, 48
  • [22] An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
    Dierckx, Goedele
    Goegebeur, Yuri
    Guillou, Armelle
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 70 - 86
  • [23] Tail prepivoting for the Hill estimator
    Brito, Margarida
    Moreira Freitas, Ana Cristina
    Freitas, Jorge Milhazes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (19)
  • [24] LOCAL ESTIMATION OF THE HURST INDEX OF MULTIFRACTIONAL BROWNIAN MOTION BY INCREMENT RATIO STATISTIC METHOD
    Bertrand, Pierre Raphael
    Fhima, Mehdi
    Guillin, Arnaud
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 307 - 327
  • [25] Likelihood Based Confidence Intervals for the Tail Index
    Jye-Chyi Lu
    Liang Peng
    Extremes, 2002, 5 (4) : 337 - 352
  • [26] Tail behavior of the least-squares estimator
    Jurecková, J
    Koenker, R
    Portnoy, S
    STATISTICS & PROBABILITY LETTERS, 2001, 55 (04) : 377 - 384
  • [27] Estimation of a tail index based on minimum density power divergence
    Kim, Moosup
    Lee, Sangyeol
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2453 - 2471
  • [28] Estimation of the tail index for lattice-valued sequences
    Matsui, Muneya
    Mikosch, Thomas
    Tafakori, Laleh
    EXTREMES, 2013, 16 (04) : 429 - 455
  • [29] Estimation of the tail index for lattice-valued sequences
    Muneya Matsui
    Thomas Mikosch
    Laleh Tafakori
    Extremes, 2013, 16 : 429 - 455
  • [30] Estimation of the tail index in the max-aggregation scheme
    Paulauskas, Vygantas
    Vaiciulis, Marijus
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (03) : 297 - 315