Thermostable proteins as probe for the design of advanced fluorescence biosensors

被引:6
作者
De Champdoré M. [1 ]
Staiano M. [1 ]
Aurilia V. [1 ]
Stepanenko O.V. [1 ,2 ]
Parracino A. [1 ]
Rossi M. [1 ]
D'Auria S. [1 ]
机构
[1] Institute of Protein Biochemistry, Italian National Research Council, 80131 Naples
[2] Institute of Cytology, Russian Academy of Science
关键词
Biosensors; Fluorescence; Glucose; Proteins; Thermophilic Organisms;
D O I
10.1007/s11157-006-0009-9
中图分类号
学科分类号
摘要
In this review we explore the advantages deriving from the use of either enzymes or sugar binding proteins isolated from thermophilic organisms to develop stable fluorescence biosensors. We report on a novel approach to address the consumption of the analyte by enzyme-based biosensors, namely the utilization of apo-enzymes as non-active forms of proteins which are still able to bind the ligand but cannot transform it into product. We also report recent studies in which the fluorescence labeling of a naturally thermostable binding protein allows a quantitative determination of glucose. © Springer Science+Business Media B.V. 2006.
引用
收藏
页码:233 / 242
页数:9
相关论文
共 43 条
[1]  
Aleshin A.E., Zeng C., Bourenkov G.P., Bartunik H.D., Fromm H.J., Honzatko R.B., The mechanism of regulation of hexokinase: New insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose 6-phosphate, Structure, 6, 1, pp. 39-50, (1998)
[2]  
Bennet W.S.J., Steitz T.A., Structure of a complex between yeast hexokinase A and glucose: Structure determination and refinement at 3.5 Å resolution, J Mol Biol, 140, 2, pp. 183-209, (1980)
[3]  
Boos W., Lucht J.M., Periplasmic binding-protein-dependent ABC transports, E. coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1175-1209, (1995)
[4]  
Colacino F., Crichton R.R., Enzyme stabilisation: The state of the art, Biotechnol Genet Eng Rev, 14, pp. 211-277, (1997)
[5]  
D'Auria S., Barone R., Rossi M., Nucci R., Barone G., Fessas D., Bertoli E., Tanfani F., Effects of temperature and SDS on the structure of β-glycosidase from the thermophilic archaeon Sulfolobus solfataricus, Biochem J, 323, pp. 833-840, (1997)
[6]  
D'Auria S., Nucci R., Rossi M., Grycznisky I., Malak H., Lakowicz J.R., The β-glycosidase from the Archaeon Sulfolobus solfataricus: Structure and activity in the presence of alcohol, J. Biochemistry, 126, 3, pp. 545-552, (1999)
[7]  
D'Auria S., Nucci R., Rossi M., Gryczynski I., Gryczynski Z., Lakowicz J.R., The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: Enzyme activity and conformational dynamics at temperatures above 100°C, Biophys Chem, 81, pp. 23-31, (1999)
[8]  
D'Auria S., Herman P., Lakowicz J.R., Bertoli E., Tanfani F., Rossi M., Manco G., The thermophilic esterase from Archaeoglobus fulgidus: Structure and conformational dynamics at high temperature, Proteins, 38, pp. 351-360, (2000)
[9]  
D'Auria S., Lakowicz J.R., Enzyme fluorescence as a sensing tool: New perspectives in biotechnology, Curr Opin Biotechnol, 1, pp. 99-104, (2001)
[10]  
D'Auria S., Moracci M., Febbraio F., Tanfani F., Nucci R., Rossi M., Structure-function studies on β-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability, Biochimie, 80, pp. 949-957, (1998)