Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes

被引:0
|
作者
Bradley T Webb
An-Yuan Guo
Brion S Maher
Zhongming Zhao
Edwin J van den Oord
Kenneth S Kendler
Brien P Riley
Nathan A Gillespie
Carol A Prescott
Christel M Middeldorp
Gonneke Willemsen
Eco JC de Geus
Jouke-Jan Hottenga
Dorret I Boomsma
Eline P Slagboom
Naomi R Wray
Grant W Montgomery
Nicholas G Martin
Margie J Wright
Andrew C Heath
Pamela A Madden
Joel Gelernter
James A Knowles
Steven P Hamilton
Myrna M Weissman
Abby J Fyer
Patricia Huezo-Diaz
Peter McGuffin
Anne Farmer
Ian W Craig
Cathryn Lewis
Pak Sham
Raymond R Crowe
Jonathan Flint
John M Hettema
机构
[1] Virginia Institute for Psychiatric and Behavioral Genetics,Department of Psychiatry
[2] Virginia Commonwealth University,Departments of Biomedical Informatics and Psychiatry
[3] Vanderbilt University School of Medicine,Department of Mental Health
[4] Johns Hopkins School of Public Health,Department of Psychology
[5] School of Pharmacy,Department of Biological Psychology
[6] Virginia Commonwealth University,Department of Molecular Epidemiology
[7] University of Southern California,Department of Psychiatry
[8] VU University,Departments of Psychiatry
[9] Leiden University Medical Center,Department of Psychiatry
[10] Queensland Brain Institute,Department of Psychiatry
[11] University of Queensland,Department of Psychiatry
[12] Queensland Institute of Medical Research,Department of Psychiatry
[13] Washington University School of Medicine,undefined
[14] Genetics and Neurobiology,undefined
[15] Yale University School of Medicine,undefined
[16] Keck School of Medicine,undefined
[17] University of Southern California,undefined
[18] University of California,undefined
[19] College of Physicians and Surgeons,undefined
[20] Columbia University,undefined
[21] New York,undefined
[22] NY,undefined
[23] USA,undefined
[24] New York State Psychiatric Institute,undefined
[25] Institute of Psychiatry,undefined
[26] King’s College London,undefined
[27] University of Hong Kong,undefined
[28] University of Iowa,undefined
来源
关键词
anxiety; neuroticism; panic disorder; linkage; meta-analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Genetic factors underlying trait neuroticism, reflecting a tendency towards negative affective states, may overlap genetic susceptibility for anxiety disorders and help explain the extensive comorbidity amongst internalizing disorders. Genome-wide linkage (GWL) data from several studies of neuroticism and anxiety disorders have been published, providing an opportunity to test such hypotheses and identify genomic regions that harbor genes common to these phenotypes. In all, 11 independent GWL studies of either neuroticism (n=8) or anxiety disorders (n=3) were collected, which comprised of 5341 families with 15 529 individuals. The rank-based genome scan meta-analysis (GSMA) approach was used to analyze each trait separately and combined, and global correlations between results were examined. False discovery rate (FDR) analysis was performed to test for enrichment of significant effects. Using 10 cM intervals, bins nominally significant for both GSMA statistics, PSR and POR, were found on chromosomes 9, 11, 12, and 14 for neuroticism and on chromosomes 1, 5, 15, and 16 for anxiety disorders. Genome-wide, the results for the two phenotypes were significantly correlated, and a combined analysis identified additional nominally significant bins. Although none reached genome-wide significance, an excess of significant PSRP-values were observed, with 12 bins falling under a FDR threshold of 0.50. As demonstrated by our identification of multiple, consistent signals across the genome, meta-analytically combining existing GWL data is a valuable approach to narrowing down regions relevant for anxiety-related phenotypes. This may prove useful for prioritizing emerging genome-wide association data for anxiety disorders.
引用
收藏
页码:1078 / 1084
页数:6
相关论文
共 50 条
  • [31] Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank
    Lynsey S. Hall
    Mark J. Adams
    Aleix Arnau-Soler
    Toni-Kim Clarke
    David M. Howard
    Yanni Zeng
    Gail Davies
    Saskia P. Hagenaars
    Ana Maria Fernandez-Pujals
    Jude Gibson
    Eleanor M. Wigmore
    Thibaud S. Boutin
    Caroline Hayward
    Generation Scotland
    David J. Porteous
    Ian J. Deary
    Pippa A. Thomson
    Chris S. Haley
    Andrew M. McIntosh
    Translational Psychiatry, 8
  • [32] Power considerations for λ inflation factor in meta-analyses of genome-wide association studies
    Georgiopoulos, Georgios
    Evangelou, Evangelos
    GENETICS RESEARCH, 2016, 98
  • [33] Analyses of Genome-Wide Association Scans for Additional Outcomes
    Kraft, Peter
    EPIDEMIOLOGY, 2007, 18 (06) : 838 - 838
  • [34] Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility
    Landi, Maria Teresa
    Bishop, D. Timothy
    MacGregor, Stuart
    Machiela, Mitchell J.
    Stratigos, Alexander J.
    Ghiorzo, Paola
    Brossard, Myriam
    Calista, Donato
    Choi, Jiyeon
    Fargnoli, Maria Concetta
    Zhang, Tongwu
    Rodolfo, Monica
    Trower, Adam J.
    Menin, Chiara
    Martinez, Jacobo
    Hadjisavvas, Andreas
    Song, Lei
    Stefanaki, Irene
    Scolyer, Richard
    Yang, Rose
    Goldstein, Alisa M.
    Potrony, Miriam
    Kypreou, Katerina P.
    Pastorino, Lorenza
    Queirolo, Paola
    Pellegrini, Cristina
    Cattaneo, Laura
    Zawistowski, Matthew
    Gimenez-Xavier, Pol
    Rodriguez, Arantxa
    Elefanti, Lisa
    Manoukian, Siranoush
    Rivoltini, Licia
    Smith, Blair H.
    Loizidou, Maria A.
    Del Regno, Laura
    Massi, Daniela
    Mandala, Mario
    Khosrotehrani, Kiarash
    Akslen, Lars A.
    Amos, Christopher, I
    Andresen, Per A.
    Avril, Marie-Francoise
    Azizi, Esther
    Soyer, H. Peter
    Bataille, Veronique
    Dalmasso, Bruna
    Bowdler, Lisa M.
    Burdon, Kathryn P.
    Chen, Wei, V
    NATURE GENETICS, 2020, 52 (05) : 494 - +
  • [35] Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study
    Yang, Qiong
    Kathiresan, Sekar
    Lin, Jing-Ping
    Tofler, Geoffrey H.
    O'Donnell, Christopher J.
    BMC MEDICAL GENETICS, 2007, 8
  • [36] Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility
    Maria Teresa Landi
    D. Timothy Bishop
    Stuart MacGregor
    Mitchell J. Machiela
    Alexander J. Stratigos
    Paola Ghiorzo
    Myriam Brossard
    Donato Calista
    Jiyeon Choi
    Maria Concetta Fargnoli
    Tongwu Zhang
    Monica Rodolfo
    Adam J. Trower
    Chiara Menin
    Jacobo Martinez
    Andreas Hadjisavvas
    Lei Song
    Irene Stefanaki
    Richard Scolyer
    Rose Yang
    Alisa M. Goldstein
    Miriam Potrony
    Katerina P. Kypreou
    Lorenza Pastorino
    Paola Queirolo
    Cristina Pellegrini
    Laura Cattaneo
    Matthew Zawistowski
    Pol Gimenez-Xavier
    Arantxa Rodriguez
    Lisa Elefanti
    Siranoush Manoukian
    Licia Rivoltini
    Blair H. Smith
    Maria A. Loizidou
    Laura Del Regno
    Daniela Massi
    Mario Mandala
    Kiarash Khosrotehrani
    Lars A. Akslen
    Christopher I. Amos
    Per A. Andresen
    Marie-Françoise Avril
    Esther Azizi
    H. Peter Soyer
    Veronique Bataille
    Bruna Dalmasso
    Lisa M. Bowdler
    Kathryn P. Burdon
    Wei V. Chen
    Nature Genetics, 2020, 52 : 494 - 504
  • [37] Easygwa-S - A General Software For Stratified Genome-Wide Association Meta-Analyses
    Winkler, T. W.
    Kronenberg, F.
    Heid, I. M.
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 165 - 165
  • [38] Methods for Meta-Analyses of Genome-wide Association Studies: Critical Assessment of Empirical Evidence
    Goegele, Martin
    Minelli, Cosetta
    Thakkinstian, Ammarin
    Yurkiewich, Alex
    Pattaro, Cristian
    Pramstaller, Peter P.
    Little, Julian
    Attia, John
    Thompson, John R.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (08) : 739 - 749
  • [39] Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes
    Nana Liu
    Longjiang Zhang
    Tian Tian
    Jingliang Cheng
    Bing Zhang
    Shijun Qiu
    Zuojun Geng
    Guangbin Cui
    Quan Zhang
    Weihua Liao
    Yongqiang Yu
    Hui Zhang
    Bo Gao
    Xiaojun Xu
    Tong Han
    Zhenwei Yao
    Wen Qin
    Feng Liu
    Meng Liang
    Qiang Xu
    Jilian Fu
    Jiayuan Xu
    Wenzhen Zhu
    Peng Zhang
    Wei Li
    Dapeng Shi
    Caihong Wang
    Su Lui
    Zhihan Yan
    Feng Chen
    Jiance Li
    Jing Zhang
    Dawei Wang
    Wen Shen
    Yanwei Miao
    Junfang Xian
    Jia-Hong Gao
    Xiaochu Zhang
    Mulin Jun Li
    Kai Xu
    Xi-Nian Zuo
    Meiyun Wang
    Zhaoxiang Ye
    Chunshui Yu
    Nature Genetics, 2023, 55 : 1126 - 1137
  • [40] Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics
    Agrawal, Arpana
    Edenberg, Howard J.
    Gelernter, Joel
    JOURNAL OF STUDIES ON ALCOHOL AND DRUGS, 2016, 77 (05) : 676 - 680