New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
    Lars-Erik Persson
    Serikbol Shaimardan
    Journal of Inequalities and Applications, 2015
  • [42] On some new variations of Hardy type inequalities
    Khan, Zareen A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1709 - 1713
  • [43] Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
    Persson, Lars-Erik
    Shaimardan, Serikbol
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [44] Diamond alpha Hardy-Copson type dynamic inequalities
    Kayar, Zeynep
    Kaymakcalan, Billur
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (01): : 48 - 73
  • [45] Novel dynamic Hardy-type inequalities on time scales
    El-Deeb, Ahmed A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5299 - 5313
  • [46] SOME DYNAMIC HARDY-TYPE INEQUALITIES WITH GENERAL KERNEL
    Bohner, Martin
    Nosheen, Ammara
    Pecaric, Josip
    Younus, Awais
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 185 - 199
  • [47] EXTENSIONS OF DYNAMIC INEQUALITIES OF HARDY'S TYPE ON TIME SCALES
    Saker, S. H.
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2015, 65 (05) : 993 - 1012
  • [48] Further norm and numerical radii inequalities for operators involving a positive operator
    Altwaijry, Najla
    Conde, Cristian
    Dragomir, Silvestru Sever
    Feki, Kais
    AIMS MATHEMATICS, 2025, 10 (02): : 2684 - 2696
  • [49] On some new developments of Hardy-type inequalities
    Abramovich, Shoshana
    Persson, Lars-Erik
    Samko, Natasha
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 739 - 746
  • [50] NEW EQUIVALENT CONDITIONS FOR HARDY-TYPE INEQUALITIES
    Kufner, Alois
    Kuliev, Komil
    Kulieva, Gulchehra
    Eshimova, Mohlaroyim
    MATHEMATICA BOHEMICA, 2024, 149 (01): : 57 - 73