New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] On Some New Dynamic Inequalities Involving C-Monotonic Functions on Time Scales
    AlNemer, Ghada
    Saied, A. I.
    Hassan, A. M.
    Cesarano, Clemente
    Rezk, Haytham M. M.
    Zakarya, Mohammed
    AXIOMS, 2022, 11 (11)
  • [32] On a new class of dynamic Hardy-type inequalities and some related generalizations
    Saker, S. H.
    Osman, M. M.
    Anderson, Douglas R.
    AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 773 - 793
  • [33] On a new class of dynamic Hardy-type inequalities and some related generalizations
    S. H. Saker
    M. M. Osman
    Douglas R. Anderson
    Aequationes mathematicae, 2022, 96 : 773 - 793
  • [34] Dynamic Hardy-type inequalities with non-conjugate parameters
    AlNemer, Ghada
    Zakarya, M.
    Abd El-Hamid, H. A.
    Kenawy, M. R.
    Rezk, H. M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4523 - 4532
  • [35] Some New Weighted Dynamic Inequalities for Monotone Functions Involving Kernels
    Saker, Samir H.
    Saied, Ahmed I.
    Krnic, Mario
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [36] SOME NEW MULTIDIMENSIONAL HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS ON TIME SCALES
    Awwad, E.
    Saied, A. I.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01): : 393 - 412
  • [37] WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 77 - 91
  • [38] Existence of minimizer of some functionals involving Hardy-type inequalities
    Sintzoff, Paul
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2006, 28 (01) : 105 - 115
  • [39] SOME DYNAMIC INEQUALITIES OF HARDY TYPE ON TIME SCALES
    Saker, S. H.
    O'Regan, Donal
    Agarwal, R. P.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1183 - 1199
  • [40] More accurate dynamic Hardy-type inequalities obtained via superquadraticity
    Saker, Samir H.
    Rezk, Haytham M.
    Krnic, Mario
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2691 - 2713