New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Wavelet Characterizations of Operator-Valued Hardy Spaces
    Hong, Guixiang
    Wang, Wenhua
    Wu, Xinfeng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (16) : 13978 - 14005
  • [22] Hardy's operator minus identity and power weights
    Strzelecki, Michal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (02)
  • [23] NORM ESTIMATES FOR THE HARDY OPERATOR IN TERMS OF Bp WEIGHTS
    Boza, Santiago
    Soria, Javier
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (06) : 2455 - 2465
  • [24] Some new generalized weighted dynamic inequalities of Hardy's type on time scales
    Saker, S. H.
    El-sheikh, M. M. A.
    Madian, A. M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04): : 289 - 301
  • [25] DISCRETE ITERATED HARDY-TYPE INEQUALITIES WITH THREE WEIGHTS
    Oinarov, R.
    Omarbayeva, B. K.
    Temirkhanova, A. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 105 (01): : 19 - 29
  • [26] Weighted dynamic Hardy-type inequalities involving many functions on arbitrary time scales
    El-Deeb, Ahmed A.
    Mohamed, Karim A.
    Baleanu, Dumitru
    Rezk, Haytham M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [27] Weighted dynamic Hardy-type inequalities involving many functions on arbitrary time scales
    Ahmed A. El-Deeb
    Karim A. Mohamed
    Dumitru Baleanu
    Haytham M. Rezk
    Journal of Inequalities and Applications, 2022
  • [28] HARDY TYPE INEQUALITIES INVOLVING GRADIENT OF DISTANCE FUNCTION
    Avkhadiev, F. G.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (03): : 3 - 16
  • [29] NEW CARLSON-BELLMAN AND HARDY-LITTLEWOOD DYNAMIC INEQUALITIES
    Saker, S. H.
    Tunc, C.
    Mahmoud, R. R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 967 - 983
  • [30] SOME WEIGHTED DYNAMIC INEQUALITIES OF HARDY TYPE WITH KERNELS ON TIME SCALES NABLA CALCULUS
    Awwad, Essam
    Saied, A. I.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 457 - 475