Crystalline Conductance and Absolutely Continuous Spectrum of 1D Samples

被引:0
作者
Laurent Bruneau
Vojkan Jakšić
Yoram Last
Claude-Alain Pillet
机构
[1] CNRS and Université de Cergy-Pontoise,Département de Mathématiques and UMR 8088
[2] McGill University,Department of Mathematics and Statistics
[3] The Hebrew University,Institute of Mathematics
[4] Université de Toulon,undefined
[5] CNRS,undefined
[6] CPT,undefined
[7] UMR 7332,undefined
[8] Aix-Marseille Université,undefined
[9] CNRS,undefined
[10] CPT,undefined
[11] UMR 7332,undefined
[12] FRUMAM,undefined
来源
Letters in Mathematical Physics | 2016年 / 106卷
关键词
Schrödinger operators; absolutely continuous spectrum; quantum transport; conductances; 82C10; 35J10; 81Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the absolutely continuous spectrum of half-line one-dimensional Schrödinger operators in terms of the limiting behavior of the crystalline Landauer–Büttiker conductance of the associated finite samples.
引用
收藏
页码:787 / 797
页数:10
相关论文
共 31 条
[1]  
Anderson P.W.(1980)The Thouless conjecture for a one-dimensional chain Suppl. Prog. Theor. Phys. 69 212-219
[2]  
Lee P.A.(2007)Transport properties of quasi-free fermions J. Math. Phys. 48 032101-616
[3]  
Aschbacher W.(2015)On the Kotani–Last and Schrödinger conjectures J. Am. Math. Soc. 28 579-513
[4]  
Jakšić V.(2013)Landauer–Büttiker formula and Schrödinger conjecture Commun. Math. Phys. 319 501-366
[5]  
Pautrat Y.(2015)Landauer–Büttiker and Thouless conductance Commun. Math. Phys. 338 347-736
[6]  
Pillet C.-A.(1985)Generalized many-channel conductance formula with application to small rings Phys. Rev. B 31 6207-820
[7]  
Avila A.(1997)Landauer and Thouless conductance: a band random matrix approach J. Phys. I Fr. 7 729-undefined
[8]  
Bruneau L.(2005)A rigorous proof of the Landauer–Büttiker formula J. Math. Phys. 46 042106-undefined
[9]  
Jakšić V.(1972)Numerical studies of localization in disordered systems J. Phys. C Solid State Phys. 5 807-undefined
[10]  
Pillet C.A.(1970)Electrical resistance of disordered one-dimensional lattices Philos. Mag. 21 863-undefined