In this paper, under the assumption that the diagonal coset vertex operator algebra C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is rational and C2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_2$$\end{document}-cofinite, the global dimension of C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is obtained and the quantum dimensions of multiplicity spaces viewed as C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document}-modules are also obtained. As an application, a method to classify irreducible modules of C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is provided. As an example, we prove that the diagonal coset vertex operator algebra C(LE8(k+2,0),LE8(k,0)⊗LE8(2,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{E_8}(k+2,0),L_{E_8}(k,0)\otimes L_{E_8}(2,0))$$\end{document} is rational, C2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_2$$\end{document}-cofinite, and classify irreducible modules of C(LE8(k+2,0),LE8(k,0)⊗LE8(2,0))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C(L_{E_8}(k+2,0),L_{E_8}(k,0)\otimes L_{E_8}(2,0))$$\end{document}.