Quantum dimensions and irreducible modules of some diagonal coset vertex operator algebras

被引:0
作者
Xingjun Lin
机构
[1] Wuhan University,Collaborative Innovation Centre of Mathematics, School of Mathematics and Statistics
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Vertex operator algebra; Coset vertex operator algebra; Quantum dimension; Global dimension; Affine Lie algebra; 17B69; 17B67;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, under the assumption that the diagonal coset vertex operator algebra C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is rational and C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2$$\end{document}-cofinite, the global dimension of C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is obtained and the quantum dimensions of multiplicity spaces viewed as C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document}-modules are also obtained. As an application, a method to classify irreducible modules of C(Lg(k+l,0),Lg(k,0)⊗Lg(l,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{\mathfrak {g}}(k+l,0),L_{\mathfrak {g}}(k,0)\otimes L_{\mathfrak {g}}(l,0))$$\end{document} is provided. As an example, we prove that the diagonal coset vertex operator algebra C(LE8(k+2,0),LE8(k,0)⊗LE8(2,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{E_8}(k+2,0),L_{E_8}(k,0)\otimes L_{E_8}(2,0))$$\end{document} is rational, C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2$$\end{document}-cofinite, and classify irreducible modules of C(LE8(k+2,0),LE8(k,0)⊗LE8(2,0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(L_{E_8}(k+2,0),L_{E_8}(k,0)\otimes L_{E_8}(2,0))$$\end{document}.
引用
收藏
页码:1363 / 1380
页数:17
相关论文
共 72 条
  • [1] Abe T(2004)Rationality, regularity and Trans. Am. Math. Soc. 356 3391-3402
  • [2] Buhl G(2005)-cofiniteness Commun. Math. Phys. 253 171-219
  • [3] Dong C(2017)Fusion rules for the vertex operator algebra Commun. Math. Phys. 355 339-372
  • [4] Abe T(2019) and Invent. Math. 218 145-195
  • [5] Dong C(1986)Orbifolds and cosets of minimal Proc. Natl. Acad. Sci. USA 83 3068-3071
  • [6] Li H(2013)-algebras Trans. Am. Math. Soc. 365 6441-6469
  • [7] Arakawa T(2019)W-algebras as coset vertex algebras Adv. Math. 348 1-17
  • [8] Creutzig T(2009)Vertex algebras, Kac-Moody algebras, and the Monster J. Algebra 322 2366-2403
  • [9] Kawasetsu K(1996)Quantum dimensions and quantum Galois theory Commun. Math. Phys. 180 671-707
  • [10] Linshaw A(1997)Trace functions of the parafermion vertex operator algebras Adv. Math. 132 148-166